Effects of the lichen Peltigera canina on Cucurbita pepo spp. pepo grown in soil contaminated by DDTs.

Environ Sci Pollut Res Int

Department of Environmental Engineering, Bursa Technical University, 16130, Bursa, Turkey.

Published: March 2021

Lichens consisting of a symbiotic association of green algae or cyanobacteria and fungi are found in a variety of environmental conditions worldwide. Terricolous lichens, located in soils, affect the living and lifeless environment of the soil due to their effective secondary metabolite and enzymatic content. Terricolous lichens can increase the biological, chemical, and physical usefulness of soil. However, their effects in ensuring the bioavailability of contaminated soil are not known, especially on soil pollution caused by DDTs (p,p'-DDE, p,p'-DDD, p,p'-DDT). This research focuses on the effect of terricolous lichens on zucchini (Cucurbita pepo spp. pepo) grown in soil contaminated by DDTs, utilizing their secondary metabolite and enzymatic contents. Firstly, Peltigera canina, a terricolous lichen species, was added to soil contaminated by DDTs as powdered and intact thallus. After lichen addition to soil, zucchini was planted in. The oxidative stress and antioxidative enzyme activities of zucchini were measured. According to the results, P. canina treatments have a positive effect on the growth and development of zucchini, although oxidative stress was observed. Also, it was determined that powdered application had more effective results than intact thallus application.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-020-11665-4DOI Listing

Publication Analysis

Top Keywords

soil contaminated
12
contaminated ddts
12
terricolous lichens
12
peltigera canina
8
cucurbita pepo
8
pepo spp
8
spp pepo
8
pepo grown
8
soil
8
grown soil
8

Similar Publications

Cadmium, a toxic heavy metal, poses significant global concern. A strain of the genus Pseudomonas, CD3, demonstrating significant cadmium resistance (up to 3 mM CdCl.HO) was identified from a pool of 26 cadmium-resistant bacteria isolated from cadmium-contaminated soil samples from Malda, India.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) are commonly found in heavy metal-contaminated environments and form extraradical mycelium (ERM), but knowledge of their ecological functions is limited. In the present study, a soil column was filled with sterilized cadmium (Cd)-contaminated soil and contained an in-growth core for AMF-inoculated maize seedling growth. The in-growth core was static to maintain or rotated to disrupt ERM growth.

View Article and Find Full Text PDF

Enhancement of alfalfa growth resistance by arbuscular mycorrhiza and earthworm in molybdenum-contaminated soils: From the perspective of soil nutrient turnover.

Environ Res

December 2024

Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310021, P. R. China. Electronic address:

Molybdenum (Mo) acts as a crucial nutrient for plant development, yet excessive soil exposure can cause detrimental effects. Molybdenosis symptoms remain subtle in many plants, largely due to the safeguarding functions of soil organisms, the fundamental biological mechanisms lack clarity. In this study, we explored the potential mechanisms for amending Mo-exposed soils with soil microbe-arbuscular mycorrhizal fungi (AMF) and soil fauna, specifically earthworms, to enhance model plant-alfalfa growth resistance through soil nutrient turnover perspectives.

View Article and Find Full Text PDF

Background: Contamination with crude oil and hydrocarbons has become a global threat. Such threats have urged us to invent solutions to deal with this dilemma. However, chemical treatment comes with limited benefits.

View Article and Find Full Text PDF

Arsenic (As) is a non-essential carcinogenic metalloid and an issue of concern for rice crops. This study investigated the effects of sulfur-loaded tea waste biochar (TWB) due to modification with sodium sulfide (SSTWB) or thiourea (TUTWB) on As stress and accumulation in rice plants. The results showed that sulfur-modified TWB improved plant morphology compared to plants grown in As-contaminated soil alone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!