The impact of water temperature on the physiology of Channa punctata (Bloch, 1793) was evaluated in the present study. Fish were acclimated at 25 ± 1 °C and then exposed at six different temperatures: 10, 15, 20, 25, 30, and 35 °C. C. punctata exposed at 10, 15, and 20 °C showed 30, 21, and 11% reduced food consumption, respectively compared to 25 °C. Significantly higher respiratory burst and myeloperoxidase activities were found in fish exposed at 20 and 25 °C after 12 h of exposure compared to other treatments. Nitric oxide synthase was significantly higher at 25 °C after 12 h and at 25 and 30 °C exposed fish after 7 days compared to others. The reduced glutathione level was significantly higher at 25 °C compared to other treatments after 7 days of exposure. The thiobarbituric acid reactive substances level was minimum at 25 °C. Significantly lower antioxidant enzymes, catalase, glutathione peroxidase, and glutathione S-transferase were found in gills of fish exposed at 25 °C compared to others in both samples. The highest antioxidant enzyme levels were found at 10 °C. Heat shock protein (Hsp) 70 levels were significantly lower in liver and muscle of fish exposed at 25 °C compared to other treatments. The Hsp level was significantly higher at 35 and 30 °C exposed fish compared to others after 12 h, and the level reduced after 7 days in these treatments. Thermal stress affects food consumption rate, immune system, antioxidant enzymes, and enzyme systems in fish. The elevated Hsp70 level serves as a biomarker of stress in C. punctata. Graphical Abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10695-020-00896-4 | DOI Listing |
Gels
December 2024
Research Center for Green Energy Systems, Department of Mechanical Engineering, Gachon University, Seongnam-si 13120, Republic of Korea.
This study aims to develop efficient and sustainable hydrogels for dye adsorption, addressing the critical need for improved wastewater treatment methods. Carboxymethyl cellulose (CMC)-based hydrogels grafted with AAc were synthesized using gamma radiation polymerization. Various AAc to CMC ratios (5:5, 5:7.
View Article and Find Full Text PDFGels
November 2024
State Key Laboratory of Rice Biology, Key Laboratory of the Ministry of Agriculture and Rural Affairs for Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, China.
Potato starch is widely utilized in the food industry. Gamma irradiation is a cost-effective and environmentally friendly method for starch modification. Nevertheless, there is a scarcity of comprehensive and consistent knowledge regarding the physicochemical characteristics of high-dose gamma-irradiated potato starch, retrogradation properties in particular.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:
Ecotoxicology
September 2024
CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal.
Two monophyletic Daphnia species (Daphnia magna and D. similis) were exposed to a sub-lethal concentration of Pb (50 µg/L) for nine generations under two food regimes (usual and restricted) and analyzed for acetylcholinesterase (AChE) activity, first reproduction delay, lifespan, and net reproductive rate (R0) at the subcellular, individual, and population levels, respectively. In the sixth generation, Pb-acclimated neonates were moved to clean media for three more generations to check for recovery.
View Article and Find Full Text PDFAugment Altern Commun
July 2024
Faculty of Applied Social Sciences, Institute of Media Research and Media Education, TH Köln (University of Applied Science Cologne), Cologne, Germany.
Key word signing (KWS) is an unaided form of augmentative and alternative communication (AAC) and is frequently used by children with cognitive impairments and their families. Successful implementation of KWS requires a family environment that provides aided language input by modeling the signs. However, families face challenges implementing the signs in their everyday lives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!