We report the first systematic investigation of relativistic effects on the UV-vis spectra of two prototype complexes for so-called photo-activated chemotherapy (PACT), trans-trans-trans-[Pt(N3)2(OH)2(NH3)2] and cis-trans-cis-[Pt(N3)2(OH)2(NH3)2]. In PACT, design of new drugs requires in-depth understanding of the photo-activation mechanisms. A first step is usually to rationalize their UV-vis spectra for which time-dependent density functional theory (TD-DFT) is an indispensable tool. We carried out TD-DFT calculations with a systematic series of non-relativistic (NR), scalar-relativistic (SR), and four-component (4c) Hamiltonians. As expected, large differences are found between spectra calculated within 4c and NR frameworks, while the most intense features (found at higher energies below 300 nm) can be reasonably well reproduced within a SR framework. It is also shown that effective core potentials (ECPs) yield essentially similar results as all-electron SR calculations. Yet the underlying transitions can be strongly influenced by spin-orbit coupling, which is only present in the 4c framework: while this can affect both intense and less intense transitions in the spectra, the effect is most pronounced for weaker transitions at lower energies, above 300 nm. Since the investigated complexes are activated with light of wavelengths above 300 nm, employing a method with explicit inclusion of spin-orbit coupling may be crucial to rationalize the activation mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp05143h | DOI Listing |
J Chem Theory Comput
January 2025
Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8526, Japan.
Exploring electronic states in actinide compounds is a critical aspect of nuclear science. However, considering relativistic effects and electron correlation in theoretical calculations poses a complex challenge. To tackle this, we developed the CASPT2/RASPT2 program along with the DIRAC program, enabling calculations of electron correlation methods using multiconfigurational perturbation theory with various relativistic Hamiltonians.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany.
In this study, we report a comprehensive calculation of the static dipole polarizabilities of group 12 elements using the finite-field approach combined with the relativistic coupled-cluster method, including single, double, and perturbative triple excitations. Relativistic effects are systematically investigated, including scalar-relativistic, spin-orbit coupling (SOC), and fully relativistic Dirac-Coulomb contributions. The final recommended polarizability values are 37.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; Center for High Energy Physics, Peking University, Beijing 100871, China; Key Laboratory of Particle Acceleration Physics and Technology, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Dark photons, as a minimal extension of the Standard Model through an additional Abelian gauge group, may propagate relativistically across the galaxy, originating from dark matter decay or annihilation, thereby contributing to a galactic dark photon background. The generation of dark photons typically favors certain polarization modes, which are dependent on the interactions between dark matter and dark photons. We introduce a framework in which a resonant cavity is utilized to detect and differentiate these polarizations, leveraging the daily variation in expected signals due to the anisotropic distribution of dark photons and the rotation of the Earth.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States.
ConspectusUnderstanding f element-ligand covalency is at the center of efforts to design new separations schemes for spent nuclear fuel, and is therefore of signficant fundamental and practical importance. Considerable effort has been invested into quantifying covalency in f element-ligand bonding. Over the past decade, numerous studies have employed a variety of techniques to study covalency, including XANES, EPR, and optical spectroscopies, as well as X-ray crystallography.
View Article and Find Full Text PDFThe quark-gluon plasma analysis relies on the heavy quark potential, which is influenced by the anisotropic plasma parameter temperature (t), and baryonic chemical potential (μ). Employing the generalized fractional derivative Nikiforov-Uvarov (GFD-NU) method, we solved the topologically-fractional Schrödinger equation. Two scenarios were explored: the classical model (α = β = 1) and the fractional model (α, β < 1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!