Adsorption of Myoglobin and Corona Formation on Silica Nanoparticles.

Langmuir

Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70808, United States.

Published: December 2020

The adsorption of proteins from aqueous medium leads to the formation of protein corona on nanoparticles. The formation of protein corona is governed by a complex interplay of protein-particle and protein-protein interactions, such as electrostatics, van der Waals, hydrophobic, hydrogen bonding, and solvation. The experimental parameters influencing these interactions, and thus governing the protein corona formation on nanoparticles, are currently poorly understood. This lack of understanding is due to the complexity in the surface charge distribution and anisotropic shape of the protein molecules. Here, we investigate the effect of pH and salinity on the characteristics of corona formed by myoglobin on silica nanoparticles. We experimentally measure and theoretically model the adsorption isotherms of myoglobin binding to silica nanoparticles. By combining adsorption studies with surface electrostatic mapping of myoglobin, we demonstrate that a monolayered hard corona is formed in low salinity dispersions, which transforms into a multilayered hard + soft corona upon the addition of salt. We attribute the observed changes in protein adsorption behavior with increasing pH and salinity to the change in electrostatic interactions and surface charge regulation effects. This study provides insights into the mechanism of protein adsorption and corona formation on nanoparticles, which would guide future studies on optimizing nanoparticle design for maximum functional benefits and minimum toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735741PMC
http://dx.doi.org/10.1021/acs.langmuir.0c01613DOI Listing

Publication Analysis

Top Keywords

corona formation
12
silica nanoparticles
12
protein corona
12
corona
8
formation protein
8
formation nanoparticles
8
surface charge
8
corona formed
8
protein adsorption
8
adsorption
6

Similar Publications

Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored.

View Article and Find Full Text PDF

Investigating the delivery of PD-L1-targeted immunoliposomes in a dynamic cervical cancer-on-a-chip model.

J Control Release

January 2025

Precision Medicine in Oncology (PrMiO), and Nanomedicine Innovation Center Erasmus (NICE), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands. Electronic address:

The recent approval of pembrolizumab in recurrent or metastatic cervical cancer warrants further investigations into the usefulness of immunotherapies for more durable and less radical interventions. In this study, the targeting potential of anti-PD-L1-functionalized immunoliposomes was tested in a 3D in vitro cervical cancer-on-a-chip model. Immunolipsomes were synthesized and decorated externally with monovalent anti-PD-L1 Fab' fragments of commercially available atezolizumab.

View Article and Find Full Text PDF

Peptide-based nanomaterials can be easily functionalized due to their functional groups, as well as being biocompatible, stable under physiological conditions, and nontoxic. Here, diphenylalanineamide-based nanomaterials (FFANMs) were synthesized, decorated with Ca ions to set the surface charge, and characterized for possible use in gene delivery and drug release studies. FFANMs were characterized by SEM, TEM, dynamic light scattering (DLS), and LC-MS/MS.

View Article and Find Full Text PDF

Food-grade titanium dioxide (E171) is widely used in food, feed, and pharmaceuticals for its opacifying and coloring properties. This study investigates the formation of reactive oxygen species (ROS) and the aggregation behavior of E171 using the TNO Gastrointestinal (GI) model, which simulates the stomach and small intestine. E171 was characterized using multiple techniques, including electron spin resonance spectroscopy, single-particle inductively coupled plasma-mass spectrometry, transmission electron microscopy, and dynamic light scattering.

View Article and Find Full Text PDF

The synthesis of nanomaterials from PGPB is an exciting approach and it's often used in agriculture as nano-fertilizers and nano-pesticides. The present study reports a new approach to biosynthesis of silver nanoparticles (AgNP), using bacterial metabolites as agents to reduce Ag, which will remain as coating agents able to prevent microbial growth. Silver NP were biosynthesized using the bacterial metabolites produced by the beneficial strain Pseudomonas sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!