Direct Osmotic Pressure Measurements in Articular Cartilage Demonstrate Nonideal and Concentration-Dependent Phenomena.

J Biomech Eng

Department of Mechanical Engineering, Columbia University, New York, NY 10027; Department of Biomedical Engineering, Columbia University, New York, NY 10027.

Published: April 2021

The osmotic pressure in articular cartilage serves an important mechanical function in healthy tissue. Its magnitude is thought to play a role in advancing osteoarthritis. The aims of this study were to: (1) isolate and quantify the magnitude of cartilage swelling pressure in situ; and (2) identify the effect of salt concentration on material parameters. Confined compression stress-relaxation testing was performed on 18 immature bovine and six mature human cartilage samples in solutions of varying osmolarities. Direct measurements of osmotic pressure revealed nonideal and concentration-dependent osmotic behavior, with magnitudes approximately 1/3 those predicted by ideal Donnan law. A modified Donnan constitutive behavior was able to capture the aggregate behavior of all samples with a single adjustable parameter. Results of curve-fitting transient stress-relaxation data with triphasic theory in febio demonstrated concentration-dependent material properties. The aggregate modulus HA increased threefold as the external concentration decreased from hypertonic 2 M to hypotonic 0.001 M NaCl (bovine: HA=0.420±0.109 MPa to 1.266±0.438 MPa; human: HA=0.499±0.208 MPa to 1.597±0.455 MPa), within a triphasic theory inclusive of osmotic effects. This study provides a novel and simple analytical model for cartilage osmotic pressure which may be used in computational simulations, validated with direct in situ measurements. A key finding is the simultaneous existence of Donnan osmotic and Poisson-Boltzmann electrostatic interactions within cartilage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7872001PMC
http://dx.doi.org/10.1115/1.4049158DOI Listing

Publication Analysis

Top Keywords

osmotic pressure
16
articular cartilage
8
nonideal concentration-dependent
8
triphasic theory
8
cartilage
6
osmotic
6
pressure
5
direct osmotic
4
pressure measurements
4
measurements articular
4

Similar Publications

Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.

View Article and Find Full Text PDF

Determination of Osmotic Flow in Water Transport in an Illitic Clay.

Materials (Basel)

January 2025

Department of Physics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 94901 Nitra, Slovakia.

Experimental studies have shown that osmosis could be one of the mechanisms of water transport in porous materials that act, to a certain extent, as semipermeable membranes. In this paper, an experimental apparatus and the corresponding model to measure and determine the osmotic efficiency, , of bulk porous materials are described. Both the apparatus and model to interpret water transport in samples are modifications of those of Sherwood and Craster.

View Article and Find Full Text PDF

The most severe form of muscular dystrophy (MD), known as Duchenne MD (DMD), remains an incurable disease, hence the ongoing efforts to develop supportive therapies. The dysregulation of autophagy, a degradative yet protective mechanism activated when tissues are under severe and prolonged stress, is critically involved in DMD. Treatments that harness autophagic capacities therefore represent a promising therapeutic approach.

View Article and Find Full Text PDF

Albumin, the most abundant protein, contributes significantly to various physiological processes, indicating its multifunctional properties. It has drawn the attention of scientists and physicians because of its primary role in maintaining osmotic pressure and involvement in transporting numerous small molecules, including hormones, fatty acids, and drugs. A growing body of evidence has recently illustrated an additional aspect of albumin's antioxidant properties.

View Article and Find Full Text PDF

is a foodborne pathogen characterized by its robust stress tolerance and ability to form biofilms, which facilitates its survival in powdered infant formula (PIF) processing environments for prolonged periods. Gamma-aminobutyric acid (GABA) is a kind of non-protein amino acid that acts as an osmoprotectant. This study aimed to elucidate the effects of the gene on the survival of , GABA accumulation, and biofilm formation under desiccation, osmotic stress, and acid exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!