Our understanding of how projected climatic warming will influence the world's biota remains largely speculative, owing to the many ways in which it can directly and indirectly affect individual phenotypes. Its impact is expected to be especially severe in the tropics, where organisms have evolved in more physically stable conditions relative to temperate ecosystems. Lake Tanganyika (eastern Africa) is one ecosystem experiencing rapid warming, yet our understanding of how its diverse assemblage of endemic species will respond is incomplete. Herein, we conducted a laboratory experiment to assess how anticipated future warming would affect the mirror-elicited aggressive behaviour of Julidochromis ornatus, a common endemic cichlid in Lake Tanganyika. Given linkages that have been established between temperature and individual behaviour in fish and other animals, we hypothesized that water warming would heighten average individual aggression. Our findings support this hypothesis, suggesting the potential for water warming to mediate behavioural phenotypic expression through negative effects associated with individual health (body condition). We ultimately discuss the implications of our findings for efforts aimed at understanding how continued climate warming will affect the ecology of Lake Tanganyika fishes and other tropical ectotherms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7676273 | PMC |
http://dx.doi.org/10.1038/s41598-020-76780-1 | DOI Listing |
Water Res
December 2024
State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China. Electronic address:
Estuarine and coastal environments have experienced dissolved oxygen (DO hereafter) depression and hypoxia due to increasingly intensified anthropogenic eutrophication and climate warming. This review compared diverse systems in Chinese coastal waters that experience DO depletion or hypoxia, aiming to identify essential aspects in advancing the abilities in comprehensively understanding DO dynamics across systems that span wide ranges of physical and biogeochemical environments. The coastal DO depression and relevant ecological consequences around the world are generally overviewed.
View Article and Find Full Text PDFJ Neuroendocrinol
December 2024
Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
Poultry production is confronting real challenges, including a lofty projected high demand for animal proteins to feed the future, and the need to adapt to planetary boundaries (global warming) with limited natural resources (land, energy, water). Among the most challenging stressors to poultry production sustainability are heat stress (HS) and water uncertainty, that need extensive fundamental and applied research to identify effective strategies. In that regard, our group has recently developed a high-water-efficient broiler (meat-type) chicken line using water conversion ratio (WCR) as a phenotypic trait and defined the hypothalamic molecular mechanisms controlling drinking water under heat stress conditions.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Forestry, Guizhou University, Guiyang, 550025, China; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. Electronic address:
In recent years, the rapid development of the global economy has led to an increasing impact of the ongoing climate warming phenomenon on the hydrological cycle. In this context, the runoff changes affected by human activities are more severe. This study classifies climate scenarios based on carbon emission levels into "low-carbon" (SSP1-2.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
U.S. Geological Survey, U.S. Environmental Protection Agency Chesapeake Bay Program, 1750 Forest Drive, Suite 130, Annapolis, Maryland 21401, United States.
Many coastal ecosystems have suffered from cultural eutrophication and dead zones. In the Chesapeake Bay, water quality degradation is manifested in low dissolved oxygen, poor water clarity, and decreased submerged aquatic vegetation acreage. This research combines long-term monitoring data, science-based assessment methods, and novel data analysis approaches (i.
View Article and Find Full Text PDFLaryngoscope
December 2024
Department of Anesthesiology, University of California San Francisco, San Francisco, California, U.S.A.
Introduction: There is increasing prevalence of single-use flexible laryngoscopes in Otolaryngology. This study aims to quantify and compare the environmental outcomes of single-use disposable flexible laryngoscopes (SUD-Ls) and reusable flexible laryngoscope (R-Ls).
Methods: The ISO 14040 standardized Life Cycle Assessment (LCAs) was utilized to estimate the environmental footprint of SUD-L and R-L.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!