Objective: To determine the Weibull modulus m, the characteristic strength σ,the subcritical crack growth (SCG) parameters (n &A) as well as the lifetime durability of three dental ceramic materials in water: a polycrystalline yttria-stabilized zirconia (Zenostar MT O, YSZ, Ivoclar Vivadent/Wieland, Germany), a lithium disilicate glass ceramic (IPS e.max CAD, LD, Ivoclar Vivadent, Liechtenstein), and a zirconia-containing lithium silicate glass ceramic (Celtra Duo, ZLS, Dentsply Sirona Inc, USA).
Methods: 30 specimens (Ø12 mm × 0.9 mm thickness) of each material were fabricated. The biaxial ring-on-ring bending tests at four stress rates σ˙ (100, 10, 1, 0.1 MPa/s) were performed in water for all three ceramics. The results were used to determine the Weibull and SCG parameters, and to plot the Strength-Probability-Time (SPT) diagram.
Results: YSZ showed the highest m (12.5) and highest σ (542 MPa), while the values for the glass ceramic materials were lower: for LD m = 4.7, σ = 407 MPa, and for ZLS m = 2.7, σ = 279 MPa. The n for YSZ, LD and ZLS in water were 31.1, 13.7 and 16.6, respectively. The strength of YSZ decreased by 50% within a simulated period of 10 years, and for the glass ceramic materials the decrease was up to 80%.
Significance: Determining the Weibull and SCG parameters from the constant stress rate testing is an efficient methodology for ranking materials in terms of durability and longevity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2020.10.015 | DOI Listing |
ACS Nano
January 2025
Functional Materials Research Laboratory, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China.
Polar vortices are predominantly observed within the confined ferroelectric films and the ferroelectric/paraelectric superlattices. This raises the intriguing question of whether polar vortices can form within relaxor ferroelectric ceramics and subsequently contribute to their energy storage performances. Here, we incorporate 10 mol % CaSnO into the 0.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Material Science and Engineering, NTNU Norwegian University of Science and Technology, Trondheim 7491, Norway.
The chemical flexibility of the tetragonal tungsten bronze (TTB) structure offers a large potential for compositional engineering. Cation size and vacancy concentration are known to affect its structure, cation disorder, and functional properties. However, the compositional complexity also makes the TTB structure challenging to understand.
View Article and Find Full Text PDFNano Lett
January 2025
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha 410082, China.
Solid-state metallic potassium batteries (SSMPBs) afresh have attracted incremental attention because of their potential to supplement solid-state metallic lithium batteries. However, SSMPBs suffer poor electrochemical performances due to the low ionic conductivity of solid electrolytes and huge electrode/electrolyte interfacial resistance. Herein, high-rate SSMPBs are achieved by in situ ring-opening polymerization of 1,3-dioxolane with succinonitrile as a plasticizer and Al(OTf) as the catalyst, where the succinonitrile enables short-chain polyether electrolytes.
View Article and Find Full Text PDFNano Lett
January 2025
National Innovation Center for Industry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds.
View Article and Find Full Text PDFDiscov Nano
January 2025
Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.
Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!