Arsenic (As) exposure poses a serious threat to human health. The present study investigated the effects of organic Se on As accumulation, migration, and As bioaccessibility in As-stressed radish. The results showed that organic Se can effectively block the accumulation of As in radish, reduce As bioaccessibility, and promote the conversion of As from inorganic to organic form. The total As content decreased with increasing Se application in raw radish roots, the gastric fraction and the gastrointestinal fraction. Compared to the control (CK) group, the As bioaccessibility in the 24Se treatment of the yeast Se and malt Se groups decreased by 26% and 37%, respectively. These findings provide new comprehensive information for the application of organic Se to alleviate the toxicological effects of As and reduce the health risks of As in edible plants. In the future, it is necessary to carry out a deeper study of the interaction between Se and As through advanced analytical methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2020.128614 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, P. R. China.
Flexibility enhancement is a pressing issue in the current development of advanced lithium-metal battery applications. Many types of organic polymers are inherently flexible, which can form a composite structure enhancing electrode flexibility. However, organic polymers have a negative influence on the plating and stripping of lithium-metal anodes, and the large number of polymers block the pore of the material, reducing the utilization of the active site.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin, Ireland.
Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L.
View Article and Find Full Text PDFJACS Au
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .
View Article and Find Full Text PDFJACS Au
December 2024
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No. 345 Lingling Road, Shanghai 200032, China.
Macrocyclization is a compelling strategy for conventional drug design for improving biological activity, target specificity, and metabolic stability, but it was rarely applied to the design of PROTACs possibly due to the mechanism and structural complexity. Herein, we report the rational design of the first series of "Head-to-Tail" macrocyclic PROTACs. The resulting molecule exhibited pronounced Brd4 protein degradation with low nM DC values while almost totally dismissing the "hook effect", which is a general character and common concern of a PROTAC, in multiple cancer cell lines.
View Article and Find Full Text PDFFood Chem X
January 2025
School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
Douchiba (DCB) is a nutritious food rich in various functional components such as Tetramethylpyrazine (TTMP), and the strain fermentation is crucial for enhancing its quality. This work utilized S2-2 and S6-J1 with high TTMP production for fermentation of soybeans to optimize the pre-fermentation process and to evaluate the flavor quality of mature DCB. The concentration of TTMP in DCB fermented by mixed microbial (MG) was 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!