Effect of indel variants within the sorting nexin 29 (SNX29) gene on growth traits of goats.

Anim Biotechnol

Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.

Published: October 2022

The sorting nexin 29 gene () is a well-known regulator of myocyte differentiation and proliferation. In this work, two indels (17-bp and 21-bp) were identified in the goat gene, and their effects on the growth traits of 1,759 Shaanbei white cashmere (SBWC) goats were analyzed. Both indels had three genotypes [homozygote wild type (II), heterozygote (ID), and homozygote mutation (DD)] and displayed medium genetic diversity (0.25 < polymorphism information content (PIC) < 0.50) in the population. The 17-bp indel was significantly associated with chest width ( = 0.009), body weight ( = 0.021), and chest depth ( = 0.032), with the II genotype dominant. The 21-bp indel was significantly associated with chest width ( = 0.001), chest depth ( = 4.8E-5), heart girth ( = 0.007), and hip width ( = 0.002). Because the two indels were in the upstream (17-bp) and intron (21-bp) regions of the gene, transcription factor binding sites were predicted. The IRF5 and MYC could bind with the 17-bp indel and 21-bp indel sequences, respectively. This study indicates that is a promising candidate gene that can be used to improve meat production in goat breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10495398.2020.1846547DOI Listing

Publication Analysis

Top Keywords

sorting nexin
8
growth traits
8
indel variants
4
variants sorting
4
nexin snx29
4
snx29 gene
4
gene growth
4
traits goats
4
goats sorting
4
nexin gene
4

Similar Publications

Diabetic foot ulcer (DFU) is a common and severe complication of diabetes mellitus, the etiology of which remains insufficiently understood, particularly regarding the involvement of extracellular vesicles (EVs). In this study, nanoflow cytometry to detect EVs in DFU skin tissues is used and found a significant increase in the Translocase of Outer Mitochondrial Membrane 20 (TOM20) mitochondrial-derived vesicles (MDVs). The role of MDVs in DFU is yet to be reported.

View Article and Find Full Text PDF

EhVps35, a retromer component, is involved in the recycling of the EhADH and Gal/GalNac virulent proteins of .

Front Parasitol

March 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional [CINVESTAV-Instituto Politécnico Nacional (IPN)], Mexico City, Mexico.

The retromer is a highly conserved eukaryotic complex formed by the cargo selective complex (CSC) and the sorting nexin (SNX) dimer subcomplexes. Its function is protein recycling and recovery from the endosomes to conduct the target molecules to the trans-Golgi network or the plasma membrane. The protozoan responsible for human amoebiasis, , exhibits an active membrane movement and voracious phagocytosis, events in which the retromer may be fully involved.

View Article and Find Full Text PDF

Cargo hitchhiking autophagy - a hybrid autophagy pathway utilized in yeast.

Autophagy

January 2025

Department of Cell and Molecular Biology, Virtua Health College of Medicine and Life Sciences, School of Osteopathic Medicine, Rowan University, Stratford, NJ, USA.

Macroautophagy is a catabolic process that maintains cellular homeostasis by recycling intracellular material through the use of double-membrane vesicles called autophagosomes. In turn, autophagosomes fuse with vacuoles (in yeast and plants) or lysosomes (in metazoans), where resident hydrolases degrade the cargo. Given the conservation of autophagy, is a valuable model organism for deciphering molecular details that define macroautophagy pathways.

View Article and Find Full Text PDF

SNX3 mediates heart failure by interacting with HMGB1 and subsequently facilitating its nuclear-cytoplasmic translocation.

Acta Pharmacol Sin

January 2025

National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

Sorting nexins (SNXs) as the key regulators of sorting cargo proteins are involved in diverse diseases. SNXs can form the specific reverse vesicle transport complex (SNXs-retromer) with vacuolar protein sortings (VPSs) to sort and modulate recovery and degradation of cargo proteins. Our previous study has shown that SNX3-retromer promotes both STAT3 activation and nuclear translocation in cardiomyocytes, suggesting that SNX3 might be a critical regulator in the heart.

View Article and Find Full Text PDF

Deciphering glioblastoma pathogenesis: Insights from mitophagy dysregulation and SNX7 as a therapeutic target.

Brain Res Bull

January 2025

Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China; Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated Hospital of Fujian Medical University, Fujian, Fuzhou 350005, China. Electronic address:

Background: Glioblastoma is a highly aggressive and invasive brain tumor with an extremely poor prognosis. The aims of the present study are to investigate the pathogenesis of glioblastoma and identify potential therapeutic targets.

Methods: We performed a systematic analysis of gene expression data from multiple datasets, including GEO and TCGA, to identify hub genes and pathways associated with glioblastoma progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!