Background The mutated α-B-Crystallin (CryAB) mouse model of desmin-related myopathy (DRM) shows an age-dependent onset of pathologic cardiac remodeling and progression of heart failure. CryAB expression in cardiomyocytes affects the mitochondrial spatial organization within the myofibrils, but the molecular perturbation within the mitochondria in the relation of the overall course of the proteotoxic disease remains unclear. Methods and Results CryAB mice show an accumulation of electron-dense aggregates and myofibrillar degeneration associated with the development of cardiac dysfunction. Though extensive studies demonstrated that these altered ultrastructural changes cause cardiac contractility impairment, the molecular mechanism of cardiomyocyte death remains elusive. Here, we explore early pathological processes within the mitochondria contributing to the contractile dysfunction and determine the pathogenic basis for the heart failure observed in the CryAB mice. In the present study, we report that the CryAB mice transgenic hearts undergo altered mitochondrial dynamics associated with increased level of dynamin-related protein 1 and decreased level of optic atrophy type 1 as well as mitofusin 1 over the disease process. In association with these changes, an altered level of the components of mitochondrial oxidative phosphorylation and pyruvate dehydrogenase complex regulatory proteins occurs before the manifestation of pathologic adverse remodeling in the CryAB hearts. Mitochondria isolated from CryAB transgenic hearts without visible pathology show decreased electron transport chain complex activities and mitochondrial respiration. Taken together, we demonstrated the involvement of mitochondria in the pathologic remodeling and progression of DRM-associated cellular dysfunction. Conclusions Mitochondrial dysfunction in the form of altered mitochondrial dynamics, oxidative phosphorylation and pyruvate dehydrogenase complex proteins level, abnormal electron transport chain complex activities, and mitochondrial respiration are evident on the CryAB hearts before the onset of detectable pathologies and development of cardiac contractile dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7763772PMC
http://dx.doi.org/10.1161/JAHA.120.017195DOI Listing

Publication Analysis

Top Keywords

oxidative phosphorylation
12
cardiac dysfunction
8
remodeling progression
8
heart failure
8
development cardiac
8
contractile dysfunction
8
transgenic hearts
8
altered mitochondrial
8
mitochondrial dynamics
8
phosphorylation pyruvate
8

Similar Publications

Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex.

J Biol Chem

January 2025

Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22903. Electronic address:

The mitochondrial Ca uniporter is the Ca channel responsible for mitochondrial Ca uptake. It plays crucial physiological roles in regulating oxidative phosphorylation, intracellular Ca signaling, and cell death. The uniporter contains the pore-forming MCU subunit, the auxiliary EMRE protein, and the regulatory MICU1 subunit, which blocks the MCU pore under resting cellular Ca concentrations.

View Article and Find Full Text PDF

Introduction: Autism spectrum disorder (ASD) represents a multifaceted set of neurodevelopmental conditions marked by social deficits and repetitive behaviors. Astragaloside IV (ASIV), a natural compound derived from the traditional Chinese herb Astragali Radix, exhibits robust neuroprotective effects. However, whether ASIV can ameliorate behavioral deficits in ASD remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!