Site-specific evolutionary rate shifts are defined as protein sites, where the rate of substitution has changed dramatically across the phylogeny. With respect to a given clade, sites may either undergo a rate acceleration or a rate deceleration, reflecting a site that was conserved and became variable, or vice-versa, respectively. Sites displaying such a dramatic evolutionary change may point to a loss or gain of function at the protein site, reflecting adaptation, or they may indicate epistatic interactions among sites. Here, we analyzed full genomes of HIV and SIV-1 and identified 271 rate-shifting sites along the HIV-1/SIV phylogeny. The majority of rate shifts occurred at long branches, often corresponding to cross-species transmission branches. We noted that in most proteins, the number of rate accelerations and decelerations was equal, and we suggest that this reflects epistatic interactions among sites. However, several accessory proteins were enriched for either accelerations or decelerations, and we suggest that this may be a signature of adaptation to new hosts. Interestingly, the non-pandemic HIV-1 group O clade exhibited a substantially higher number of rate-shift events than the pandemic group M clade. We propose that this may be a reflection of the height of the species barrier between gorillas and humans versus chimpanzees and humans. Our results provide a genome-wide view of the constraints operating on proteins of HIV-1 and SIV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696578 | PMC |
http://dx.doi.org/10.3390/v12111312 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, 457 Zhongshan Road, 116023, Dalian, CHINA.
The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers.
View Article and Find Full Text PDFJ Endovasc Ther
January 2025
Angiology, HFR Fribourg, Hôpital Universitaire et Cantonal, Fribourg, Switzerland.
Purpose: Angioplasty of lower extremity arteries with calcification may result in flow-limiting dissection requiring bail-out stenting with unfavorable long-term outcomes. Vessel preparation prior to angioplasty may improve immediate results of the angioplasty and long-term patency. This prospective study assessed the 12-month outcomes of patients who underwent novel vessel preparation catheter, the FLEX Vessel Prep™ System (FLEX VP), prior to drug-coated balloon angioplasty (DCB-PTA).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
This research presents the design and analysis of a compact metamaterial (MTM)-based star-shaped split-ring resonator (SRR) enclosed in a square, constructed on a cost-effective substrate for liquid chemical sensing applications. The designed structure has dimensions of 10 × 10 mm and is optimized for detecting adulteration in edible oils. When the sample holder is filled with different percentages of oil samples, the resonance frequency of the MTM-based SRR sensor shift significantly.
View Article and Find Full Text PDFJ Anim Ecol
January 2025
Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA.
Research Highlight: Edwards, O. M., Zhai, L.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Azadi Sq., Mashhad, Khorasan Razavi P.O. Box 9177948944, Iran. Electronic address:
Protein fibrillation complex mechanisms led to an emerging trend in research for years. The mechanisms behind whey protein isolate (WPI) fibrillation driven by divalent cations remained still a matter of speculation. All cations (Ca, Fe, Mg, and Zn) enhanced the microenvironment polarity through π-π stacking, and the amide I and II shifts confirmed the fibrillation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!