Piezoelectric polymers characterized by flexibility are sought for applications in microelectronics, medicine, telecommunications, and everyday devices. The objective of this work was to obtain piezoelectric polymeric composites with a cellular structure and to evaluate their usefulness in practice. Composites based on polyolefins (isotactic-polypropylene and polyethylene) with the addition of aluminosilicate fillers were manufactured by extrusion, and then polarized in a constant electric field at 100 V/µm. The content of mineral fillers up to 10 wt% in the polymer matrix enhances its electric stability and mechanical strength. The value of the piezoelectric coefficient d attained ~150 pC/N in the range of lower stresses and ~80 pC/N in the range of higher stresses, i.e., at ~120 kPa. The materials exhibited high durability in time, therefore, they can be used as transducers of mechanical energy of the human motion into electric energy. It was demonstrated that one shoe insert generates an energy of 1.1 mJ after a person walks for 300 s. The miniaturized integrated circuits based on polyolefin composites may be applied for the power supply of portable electronics. Due to their high sensitivity, they can be recommended for measuring the blood pulse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697639PMC
http://dx.doi.org/10.3390/polym12112698DOI Listing

Publication Analysis

Top Keywords

polyolefin composites
8
pc/n range
8
cellular polyolefin
4
composites
4
piezoelectric
4
composites piezoelectric
4
piezoelectric materials
4
materials properties
4
properties applications
4
applications piezoelectric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!