Identifying major adverse effects on aquatic organisms in environmental samples is still challenging, and metabolomic approaches have been utilized as non-target screening techniques in the context of ecotoxicology. While existing methods have focused on statistical tests or univariate analysis, there is the need to further explore a multivariate analytical method that captures synergetic effects and associations among metabolites and toxicants. Here we show a new tool for screening sediment toxicity in the environment. First, we constructed predictive models using the metabolomic profiles and the result of exposure tests, to discriminate the toxic effects of target substances. The developed models were then applied to sediment samples collected from an actual urban area that contain chromium, nickel, copper, zinc, cadmium, fluoranthene, nicotine, and osmotic stress, incorporated with exposure tests of the benthic amphipod Grandidierella japonica. As a result, the fitted models showed high predictive power (Q > 0.71) and could detect toxicants from mixed chemical samples across a wide range of concentrations in test datasets. The application of the constructed models to river sediment and road dust samples indicated that almost all target substances were less toxic compared with the effects at LC50 levels. Only zinc showed slight increasing trends among samples, suggesting that the proposed method can be used for prioritization of toxicants. The present work made a direct connection between chemical exposures and metabolomic responses, and draws attention to the need for further studies on interactive mechanisms of metabolites in toxicological assessments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.141988 | DOI Listing |
Ecohealth
January 2025
Universidade Federal do Vale do São Francisco, Rodovia BR-407, KM 12, Lote 543, Sem Número, Projeto de Irrigação Nilo Coelho, Petrolina, Pernambuco, 56300-000, Brazil.
Arbovirus surveillance in marmosets (Callithrix spp.) that live close to humans helps identify viral circulation in the environment and contributes to public health. We investigated the exposure to arboviral infections in 47 captive and free-living Callithrix from urban and peri-urban areas in the semiarid region of northeastern Brazil (SNB) in 2018.
View Article and Find Full Text PDFThe kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Swedish Board Member of General Surgery, Kurdistan Higher Council of Medical Specialties, Erbil, Iraq.
The rising global incidence of syphilis underscores the risk of transmission through blood transfusions. Treponema pallidum, the pathogen responsible for syphilis, represents a major public health challenge. Accurate detection is essential for controlling the disease, particularly in asymptomatic blood donors.
View Article and Find Full Text PDFSex Transm Infect
January 2025
Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, Hong Kong, China
Background: Chemsex engagement is known to be associated with higher-risk sexual behaviour, HIV and sexually transmitted infection (STI). To reduce HIV infection risk, pre-exposure prophylaxis (PrEP) is increasingly used in the men who have sex with men (MSM) community. This study aims to examine the interrelationship between chemsex engagement and PrEP use in MSM.
View Article and Find Full Text PDFNeuroscience
January 2025
School of Arts & Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston Massachusetts, 02115, United States. Electronic address:
Peripuberty is a significant period of neurodevelopment with long-lasting effects on the brain and behavior. Blocking type 1 corticotropin-releasing factor receptors (CRFR1) in neonatal and peripubertal rats attenuates detrimental effects of early-life stress on neural plasticity, behavior, and stress hormone action, long after exposure to the drug has ended. CRFR1 antagonism can also impact neural and behavioral development in the absence of stressful stimuli, suggesting sustained alterations under baseline conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!