The use of freshwater in agricultural systems represents a high percentage of total water consumption worldwide. Therefore, alternative sources of water for irrigation will need to be developed, particularly in arid and semi-arid areas, in order to meet the growing demand for food in the future. The use of recycled wastewater (RWW), brackish water (BW) or desalinated brackish water (DBW) are among the different non-conventional water resources proposed. However, it is necessary to evaluate the health risks for humans and animals associated with the microbiological load of these waters. Protozoa such as free-living amoebae (FLA) are considered an emerging group of opportunistic pathogens capable to cause several diseases in humans (e.g. cutaneous and ocular infections, lung, bone or adrenal gland conditions or fatal encephalitis). In the present study we evaluate FLA presence in three different irrigation water qualities (RWW, BW and DBW) and its survival in irrigated agricultural soils of an extremely arid insular ecosystem (Fuerteventura, Canary Islands, Spain). Samples were cultured on 2% Non-Nutrient Agar (NNA) plates covered with a thin layer of heat killed E. coli and checked daily for the presence of FLA. According to the prevalence of FLA, Vermamoeba vermiformis (53,8%), Acanthamoeba spp. (30,8%), Vahlkampfia avara (7,7%) and Naegleria australiensis (7,7%) were detected in the analysed water samples, while Acanthamoeba (83,3%), Cercozoa spp. (8,3%) and Vahlkampfia orchilla (8,3%) were isolated in irrigated soils. Only Acanthamoeba strains were isolated in no irrigated soils used as control, evidencing the capability of these protozoa to resist environmental harsh conditions. Additionally, all analysed water sources and the irrigated soils presented growth of several pathogenic bacteria. Therefore, the coexistence in water and soils of pathogenic bacteria and FLA, can mean an increased risk of infection in agroecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.141833 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
Nitrate (NO) pollution in groundwater is a worldwide environmental issue, particularly in developed planting-breeding areas where there is a substantial presence of nitrogen-related sources. Here, we explored the key sources and potential health risks of NO in a typical planting-breeding area in the North China Plain based on dual stable isotopes and Monte Carlo simulations. The analysis results revealed that the NO concentration ranged from 0.
View Article and Find Full Text PDFPlant Dis
January 2025
University of California Davis, Plant Pathology, 1 Shields Ave, Davis, California, United States, 95616;
While recycling irrigation water can reduce water use constraints and costs in nurseries, adoption is hindered by the associated risk of recirculating and spreading waterborne pathogens. To enable regional water re-use, this study assessed oomycete re-circulation risks and recycled water treatment efficacy at organismal and community scales. In culture-based analysis of recycled pond water at two Mid-Atlantic nurseries across three years, diverse oomycetes (12+ species) were detected using culture-based analysis, with Phytopythium helicoides as the dominant species; MiSeq analysis detected eight of these species, plus 24 additional taxa.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Science and Technology, Campus of Banekane, Université des Montagnes, P.O. Box 208, Bangangté, Cameroon.
This article evaluates the prospects for rainwater harvesting (RWH) as a means of optimizing water management in the Mandara Mountains. RWH is a small-scale water conservation approach for locally intercepting and storing rainfall before it enters the usual hydrologic cycle. This ancient practice has recently sustained lives in semiarid areas of the world (e.
View Article and Find Full Text PDFEnviron Res
January 2025
INRAE, University of Montpellier, LBE, Av. des Étangs, 11100 Narbonne, France.
Clarithromycin, a common antibiotic found in domestic wastewater, persists even after treatment and can transfer to soils when treated wastewater (TWW) is used for irrigation. This residual antibiotic may exert selection pressure, promoting the spread of antibiotic resistance. While Predicted No Effect Concentrations (PNECs) are used in liquid media to predict resistance risks, PNEC values for soils, especially for clarithromycin, are lacking.
View Article and Find Full Text PDFBot Stud
January 2025
Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, 413, Taiwan.
Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!