Governments across the globe are currently besieged with the novel coronavirus (COVID-19) pandemic caused by SARS-CoV-2. Although some countries have been largely affected by this pandemic, others are only slightly affected. In this regard, every government is taking precautionary measures to mitigate the adverse effects of COVID-19. SARS-CoV-2 has been detected in wastewater raising an alarm for Africa due to the poor water, sanitation, and hygiene (WASH) facilities. Also, most countries in Africa do not have resilient policies governing sanitation and water management systems, which expose them to higher risk levels for the transmission of SARS-CoV-2. Therefore, this study unearthed the likely sources and routes of SARS-CoV-2 transmission in water systems (mainly wastewater) in Africa through a holistic review of published works. This provided the opportunity to propose sustainable remedial measures, which can be extrapolated to most developing countries in the world. The principal sources and routes of potential transmission of SARS-CoV-2 in water systems are hospital sewage, waste from isolation and quarantine centres, faecal-oral transmission, contaminated surface and groundwater sources, and contaminated sewage. The envisioned overwhelming impact of these sources on the transmission of SARS-CoV-2 through water systems in Africa suggests that governments need to put stringent and sustainable measures to curtail the scourge. Hence, it is proposed that governments in Africa must put measures like improved WASH facilities and public awareness campaigns, suburbanization of wastewater treatment facilities, utilizing low-cost point-of-use water treatment systems, legally backed policy interventions, and Community-Led Total Sanitation (CLTS). SARS-CoV-2 in water systems can be inactivated and destroyed by integrating ozonation, chlorination, UV irradiation, and sodium hypochlorite in low-cost point-of-use treatment systems. These proposed sustainable remedial measures can help policymakers in Africa to effectively monitor and manage the untoward impact of SARS-CoV-2 on water systems and consequently, on the health of the general public.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480675 | PMC |
http://dx.doi.org/10.1016/j.scitotenv.2020.142298 | DOI Listing |
An experiment was conducted for 60 days in a 500L capacity FRP tank containing inland ground saline water (fortified to a level of 50% potassium) with one control (sediment) and three treatments; T1(Paddy Straw Biochar (PSB) in sediment), T2 (Banana Peduncle Biochar (BPB) in sediment), and T3 (PSB + BPB in sediment). Biochar (100 g) was amended with sediment (25 kg) at 9 tons/ha. Shrimps of average weight 5 ± 0.
View Article and Find Full Text PDFSci Rep
January 2025
School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China.
Nitrate pollution is widespread environmental concern in most shallow groundwater systems. This study conducts a comprehensive investigation of shallow groundwater, deep groundwater, and surface water in a region of the Chinese Loess Plateau. Nitrate pollution in this area is severe with more than half of the shallow groundwater samples exceeding the limit of nitrate for drinking water (50 mg/L).
View Article and Find Full Text PDFSci Rep
January 2025
School of Safety and Management Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
The extraction of coal seams with high gas content and low permeability presents significant challenges, particularly due to the extended period required for gas extraction to meet safety standards and the inherently low extraction efficiency. Hydraulic fracturing technology, widely employed in the permeability enhancement of soft and low-permeability coal seams, serves as a key intervention. This study focuses on the high-rank raw coal from the No.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Production Department, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guian, 550025, China.
Removal of accumulated dyes from the environment water bodies is essential to prevent further harm to humans. The development and design of new alternative nanoadsorbents that can conveniently, quickly, and efficiently improve the adsorption and removal efficiency of dyes from wastewater remains a huge challenge. An amorphous TiO with a magnetic core-shell-shell structure (FeO@PDA@a-TiO, denoted as FPaT) was constructed through a series of steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!