Effect of waterproof breathable membrane based cathodes on performance and biofilm microbiomes in bioelectrochemical systems.

Sci Total Environ

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.. Electronic address:

Published: January 2021

AI Article Synopsis

  • A new method for making air-cathodes combines activated carbon, a waterproof breathable membrane, and stainless steel mesh, lowering costs for bioelectrochemical systems.
  • The best performing assembly, using polyurethane, showed a maximum power density of 2.03 W/m, surpassing the conventional method's 1.51 W/m.
  • The microbial communities on anode and cathode biofilms were significantly different; Geobacter dominated anodes while Thauera and Pseudomonas were prevalent in cathodes, indicating that cathode type affects microbial composition.

Article Abstract

A novel method for fabricating air-cathodes was developed by assembling an activated carbon (AC) catalyst together with a waterproof breathable membrane (WBM) and stainless steel mesh (SSM) to reduce manufacturing costs of bioelectrochemical systems (BESs). WBMs made of different materials were tested in the assembly, including a hybrid of polypropylene and polyolefin (PPPO), polyethylene (PE), and polyurethane (PU), and compared against poly tetrafluoroethylene (PTFE)-based cathodes. Results showed that the maximum power density of the activated carbon-stainless steel mesh-polyurethane (AC@SSM/PU) assembly was 2.03 W/m while that of conventional carbon cloth cathode assembly (Pt@CC/PTFE) was 1.51 W/m. Compared to conventional cathode fabrication, AC@SSM/PU had a much lower cost and simpler manufacturing process. Illumina Miseq sequencing of 16S rRNA gene amplicons indicated that microbiomes were substantially different between anode and cathode biofilms. There was also a difference in the community composition between different cathode biofilms. The predominant population in the anode biofilms was Geobacter (38-75% relative abundance), while Thauera and Pseudomonas dominated the cathode biofilms. The results demonstrated that different types of air-cathodes influenced the microbial community assembly on the electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142281DOI Listing

Publication Analysis

Top Keywords

cathode biofilms
12
waterproof breathable
8
breathable membrane
8
bioelectrochemical systems
8
cathode
5
membrane based
4
based cathodes
4
cathodes performance
4
performance biofilm
4
biofilm microbiomes
4

Similar Publications

Cobalt regulation biocathode with sulfate-reducing bacteria for enhancing the reduction of antimony and the removal of sulfate in a microbial electrolysis cell simultaneously.

Environ Res

January 2025

School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:

Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.

View Article and Find Full Text PDF

Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity.

View Article and Find Full Text PDF

Microbial Fuel Cells (MFCs) are innovative environmental engineering systems that harness the metabolic activities of microbial communities to convert chemical energy in waste into electrical energy. However, MFC performance optimization remains challenging due to limited understanding of microbial metabolic mechanisms, particularly with complex substrates under realistic environmental conditions. This study investigated the effects of substrate complexity (acetate vs.

View Article and Find Full Text PDF

Distinguishing abiotic corrosion from two types of microbiologically influenced corrosion (MIC) using a new electrochemical biofilm/MIC test kit.

J Environ Manage

February 2025

Department of Chemical & Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, 45701, USA; Department of Biological Sciences, Molecular & Cellular Biology Program, Ohio University, Athens, OH, 45701, USA. Electronic address:

Biofilms can cause biofouling, water quality deterioration, and transmission of infectious diseases. They are also responsible for microbiologically influenced corrosion (MIC) which can cause leaks, resulting in environmental disasters. A new disposable biofilm/MIC test kit was demonstrated to distinguish abiotic corrosion of carbon steel from MIC.

View Article and Find Full Text PDF

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!