Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dimers of 9-aminoacridine linked via the 9-amino group with polymethylene chains, termed diacridines, are known to bisintercalate into DNA when the linker comprises 6 or more methylene units. There are no literature reports of crystal or NMR solution structures for bisintercalated diacridine-DNA complexes, and the issue of the structure of the C6 ([CH ] linker where n = 6) diacridine complex remains unresolved. Previously, based on simple geometric considerations, it was proposed that C6 diacridine could only span a single base pair, which requires that its bifunctional reaction violates the widely-observed "neighbor exclusion principle" where bound intercalators are separated by at least 2 base pairs. Here we have explored the structure of diacridine-DNA complexes using unrestrained molecular dynamics in explicit solvent using the parmbsc0 forcefield in AMBER14. We studied the C4 to C8 dimers, intercalated via both the minor and major DNA grooves, to a variety of nucleotide sequences. We find that C6, C7, and C8 diacridine are able to form 2 base pair bisintercalated complexes from either groove, whereas the C4 and C5 homologues cannot. We conclude that C6 diacridine does have the capacity to bisintercalate without violating neighbor exclusion, and that the previous proposed binding model needs revision.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bip.23409 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!