Golimumab and Beta-Cell Function in Youth with New-Onset Type 1 Diabetes.

N Engl J Med

From the Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, and Diabetes Center, John R. Oishei Children's Hospital, Buffalo, NY (T.Q.); the Department of Pediatrics, University of Florida, Gainesville (M.J.H.); the Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora (A.K.S.); the Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta (E.I.F.); Janssen Research and Development, Spring House (Y.L., Y.X., J.H.L.) and Horsham (R.Z., J.A.H., M.R.R.) - both in Pennsylvania; and Janssen Research and Development, Beerse, Belgium (F.V.).

Published: November 2020

AI Article Synopsis

  • Type 1 diabetes is an autoimmune disease that leads to the loss of insulin-producing pancreatic beta cells. The study investigates whether golimumab, an existing treatment for other autoimmune conditions, can help preserve beta-cell function in youth with newly diagnosed type 1 diabetes.
  • In a phase 2 clinical trial, 84 participants aged 6 to 21 were randomly assigned to receive either golimumab or a placebo for 52 weeks, with key outcomes measured including insulin production and glycated hemoglobin levels.
  • Results indicated that participants receiving golimumab had significantly higher C-peptide levels, lower insulin usage, and a better chance of achieving partial remission compared to those receiving the placebo, suggesting potential benefits of golimumab in

Article Abstract

Background: Type 1 diabetes is an autoimmune disease characterized by progressive loss of pancreatic beta cells. Golimumab is a human monoclonal antibody specific for tumor necrosis factor that has already been approved for the treatment of several autoimmune conditions in adults and children. Whether golimumab could preserve beta-cell function in youth with newly diagnosed overt (stage 3) type 1 diabetes is unknown.

Methods: In this phase 2, multicenter, placebo-controlled, double-blind, parallel-group trial, we randomly assigned, in a 2:1 ratio, children and young adults (age range, 6 to 21 years) with newly diagnosed overt type 1 diabetes to receive subcutaneous golimumab or placebo for 52 weeks. The primary end point was endogenous insulin production, as assessed according to the area under the concentration-time curve for C-peptide level in response to a 4-hour mixed-meal tolerance test (4-hour C-peptide AUC) at week 52. Secondary and additional end points included insulin use, the glycated hemoglobin level, the number of hypoglycemic events, the ratio of fasting proinsulin to C-peptide over time, and response profile.

Results: A total of 84 participants underwent randomization - 56 were assigned to the golimumab group and 28 to the placebo group. The mean (±SD) 4-hour C-peptide AUC at week 52 differed significantly between the golimumab group and the placebo group (0.64±0.42 pmol per milliliter vs. 0.43±0.39 pmol per milliliter, P<0.001). A treat-to-target approach led to good glycemic control in both groups, and there was no significant difference between the groups in glycated hemoglobin level. Insulin use was lower with golimumab than with placebo. A partial-remission response (defined as an insulin dose-adjusted glycated hemoglobin level score [calculated as the glycated hemoglobin level plus 4 times the insulin dose] of ≤9) was observed in 43% of participants in the golimumab group and in 7% of those in the placebo group (difference, 36 percentage points; 95% CI, 22 to 55). The mean number of hypoglycemic events did not differ between the trial groups. Hypoglycemic events that were recorded as adverse events at the discretion of investigators were reported in 13 participants (23%) in the golimumab group and in 2 (7%) of those in the placebo group. Antibodies to golimumab were detected in 30 participants who received the drug; 29 had antibody titers lower than 1:1000, of whom 12 had positive results for neutralizing antibodies.

Conclusions: Among children and young adults with newly diagnosed overt type 1 diabetes, golimumab resulted in better endogenous insulin production and less exogenous insulin use than placebo. (Funded by Janssen Research and Development; T1GER ClinicalTrials.gov number, NCT02846545.).

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa2006136DOI Listing

Publication Analysis

Top Keywords

type diabetes
16
beta-cell function
8
function youth
8
newly diagnosed
8
diagnosed overt
8
4-hour c-peptide
8
c-peptide auc
8
auc week
8
golimumab group
8
group placebo
8

Similar Publications

BNT162b2 mRNA vaccine elicits robust virus-specific antibodies but poor cross-protective CD8 memory T cell responses in adolescents with type 1 diabetes.

J Microbiol Immunol Infect

January 2025

Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan; Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. Electronic address:

Background: COVID-19 mRNA vaccines have demonstrated 95 % efficacy in the general population. However, their immunogenicity in adolescents with Type 1 Diabetes (T1D), who exhibit weaken immune responses, remains insufficiently explored.

Methods: Longitudinal analysis of innate immune responses following PRR-agonists and BNT162b2 vaccine stimulations, along with S-specific antibody responses, memory T cell recall responses, and RNA-sequencing were assessed in eight T1D adolescents and 16 healthy controls at six different timepoints.

View Article and Find Full Text PDF

ISG15 increases the apoptosis of β cells in type 1 diabetes.

Cell Signal

January 2025

Department of Endocrinology, The Third Xiangya Hospital, Central South University, 410007 Changsha, Hunan, China. Electronic address:

Type 1 diabetes (T1D) is an autoimmune disease characterized by hyperglycemia caused by the destruction of insulin-producing β cells. Viral infection is an important environmental factor which is associated with the islet autoimmunity in genetically susceptible individuals. Loss of β-cells and triggering of insulitis following viral infection could result from several non-exclusive mechanisms.

View Article and Find Full Text PDF

Sodium arsenite induces islets β-cells apoptosis and dysfunction via SET-Rac1-mediated cytoskeleton disturbance.

Ecotoxicol Environ Saf

January 2025

Department of Occupational and Environmental Health, School of Public Health, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China; Global Health Research Center, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China. Electronic address:

Sodium arsenite (NaAsO), the most common form of inorganic arsenic prevalent in the environment, has been closely linked to islet β-cell dysfunction, a critical pathological hallmark of type 2 diabetes (T2D). Even though apoptosis plays a pivotal role in arsenic-induced islet β-cell dysfunction, the explicit underlying mechanisms remain elusive. Here, we have identified that the SET-Rac1 signaling pathway is instrumental in the apoptosis and dysfunction of islet β-cells induced by NaAsO.

View Article and Find Full Text PDF

The chronic diabetic wounds represented by diabetes foot ulcers (DFUs) are a worldwide challenge. Excessive production of reactive oxygen species (ROS) and persistent inflammation caused by the impaired phenotype switch of macrophages from M1 to M2 during wound healing are the main culprits of non-healing diabetic wounds. Therefore, an injectable DMM/GelMA hydrogel as a promising wound dressing was designed to regulate the mitochondrial metabolism of macrophages via inhibiting succinate dehydrogenase (SDH) activity and to promote macrophage repolarization towards M2 type.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!