Severe congenital neutropenia (SCN) of autosomal recessive inheritance, also known as Kostmann disease, is characterised by a lack of neutrophils and a propensity for life-threatening infections. Using whole-exome sequencing, we identified homozygous JAGN1 mutations (p.Gly14Ser and p.Glu21Asp) in three patients with Kostmann-like SCN, thus confirming the recent attribution of JAGN1 mutations to SCN. Using the human promyelocytic cell line HL-60 as a model, we found that overexpression of patient-derived JAGN1 mutants, but not silencing of JAGN1, augmented cell death in response to the pro-apoptotic stimuli, etoposide, staurosporine, and thapsigargin. Furthermore, cells expressing mutant JAGN1 were remarkably susceptible to agonists that normally trigger degranulation and succumbed to a calcium-dependent cell death programme. This mode of cell death was completely prevented by pharmacological inhibition of calpain but unaffected by caspase inhibition. In conclusion, our results confirmed the association between JAGN1 mutations and SCN and showed that SCN-associated JAGN1 mutations unleash a calcium- and calpain-dependent cell death in myeloid cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839451 | PMC |
http://dx.doi.org/10.1111/bjh.17137 | DOI Listing |
JAGN1 (Jagunal-homolog1) is a ER-resident transmembrane protein which is part of the early secretory pathway and granulocyte colony-stimulating factor receptor mediated signaling. Autosomal recessively inherited variants in the JAGN1 gene lead to congenital neutropenia, early-onset bacterial infections, aphthosis and skin abscesses due to aberrant differentiation and maturation of neutrophils. In addition, bone metabolism disorders and a syndromic phenotype, including facial features, short stature and neurodevelopmental delay, have been reported in affected patients.
View Article and Find Full Text PDFFront Immunol
September 2024
Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Blood Adv
August 2024
Department of Oncology, Hematology, Clinical Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany.
A variety of autosomal recessive mutations in the JAGN1 gene cause severe congenital neutropenia (CN). However, the underlying pathomechanism remains poorly understood, mainly because of the limited availability of primary hematopoietic stem cells from JAGN1-CN patients and the absence of animal models. In this study, we aimed to address these limitations by establishing a zebrafish model of JAGN1-CN.
View Article and Find Full Text PDFEur J Haematol
August 2024
Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel.
J Clin Pathol
August 2024
Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
The congenital neutropenia syndromes are rare haematological conditions defined by impaired myeloid precursor differentiation or function. Patients are prone to severe infections with high mortality rates in early life. While some patients benefit from granulocyte colony-stimulating factor treatment, they may still face an increased risk of bone marrow failure, myelodysplastic syndrome and acute leukaemia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!