Pain induces deficits in appreciation of rewards (i.e. anhedonia) and variation in response to pain may be partly explained by individual differences in general expectations (i.e. optimism). Dairy calves are routinely subjected to painful procedures such as hot-iron disbudding. We tested if female Holstein calves (n = 17) display signs of anhedonia (as evidenced by reduced consumption of a sweet solution) after hot-iron disbudding (performed under general and local anesthesia), and whether individual differences in optimism explain the variation in this response. Individual variation in optimism was measured using responses to two judgment bias tests (performed when calves were 25 d old), and anhedonia was measured by comparing consumption of a sweet solution before and after hot-iron disbudding. We found that intake of the sweet solution declined (by mean ± SD: 48.4 ± 44.3%) on the day after disbudding, and that more pessimistic calves were more affected. Sweet solution consumption did not return to baseline for the duration of the study (i.e. 5 days). Calves reduced their intake of a sweet solution after hot-iron disbudding, consistent with pain-induced anhedonia, and more pessimistic calves showed stronger evidence of anhedonia, suggesting that they were more affected by the procedure. However, our results cannot rule out the possibility that calf responses were driven by anorexia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673544 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242100 | PLOS |
Adv Sci (Weinh)
January 2025
Aramco Americas, Boston Research Center, Cambridge, MA, 02139, USA.
Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO and HS removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
This study focuses on the development of an efficient membrane-based clarification process to enhance the performance of subsequent ultrafiltration and produce high-quality sweet lime juice. A range of casting solutions were prepared using a blend of pore-forming polymers, including polyvinylpyrrolidone (PVP), polyvinylidene fluoride (PVDF), and cellulose acetate (CA), dissolved in dimethylformamide (DMF) solvent through the phase inversion technique. To further enhance the membrane's performance, four biopolymers poly (lactic acid) (PLA), xanthan gum, chitosan, and gelatin were incorporated, with and without clay, to refine its structure, porosity, and surface properties.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Graduate Program in Food Science and Technology, State University of Ponta Grossa, Avenida Carlos Cavalcanti 4748, Ponta Grossa, Paraná 84030-900 Brazil.
Sweet potato ( (L.) Lam.) is a tuber root crop with high economical potential and China is responsible for harvesting roughly 70% of the world production.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Republic of Korea.
Citrus farming is one of the major agricultural sectors of Pakistan and currently represents almost 30% of total fruit production, with its highest concentration in Punjab. Although economically important, citrus crops like sweet orange, grapefruit, lemon, and mandarins face various diseases like canker, scab, and black spot, which lower fruit quality and yield. Traditional manual disease diagnosis is not only slow, less accurate, and expensive but also relies heavily on expert intervention.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Griffin Hospital, Derby, USA.
Ethylene glycol (C₂H₆O₂), a toxic alcohol commonly found in automotive antifreeze, de-icing solutions, and industrial coolants, can cause severe toxicity when ingested. Due to its sweet taste, it is often consumed accidentally or intentionally, leading to life-threatening consequences such as metabolic acidosis, acute kidney injury (AKI), and mortality. Prompt diagnosis and early treatment with antidotes such as fomepizole or ethanol, combined with hemodialysis, are essential in preventing severe outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!