Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article studies the constrained optimization problems in the quaternion regime via a distributed fashion. We begin with presenting some differences for the generalized gradient between the real and quaternion domains. Then, an algorithm for the considered optimization problem is given, by which the desired optimization problem is transformed into an unconstrained setup. Using the tools from the Lyapunov-based technique and nonsmooth analysis, the convergence property associated with the devised algorithm is further guaranteed. In addition, the designed algorithm has the potential for solving distributed neurodynamic optimization problems as a recurrent neural network. Finally, a numerical example involving machine learning is given to illustrate the efficiency of the obtained results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2020.3031687 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!