Type 2 diabetes (T2D) development may be mediated by skeletal muscle (SkM) function, which is responsible for >80% of circulating glucose uptake. The goals of this study were to assess changes in global- and location-level gene expression, remodeling proteins, fibrosis, and vascularity of SkM with worsening glycemic control, through RNA sequencing, immunoblotting, and immunostaining. We evaluated SkM samples from health-diverse African green monkeys () to investigate these relationships. We assessed SkM remodeling at the molecular level by evaluating unbiased transcriptomics in age-, sex-, weight-, and waist circumference-matched metabolically healthy, prediabetic (PreT2D) and T2D monkeys ( = 13). Our analysis applied novel location-specific gene differences and shows that extracellular facing and cell membrane-associated genes and proteins are highly upregulated in metabolic disease. We verified transcript patterns using immunohistochemical staining and protein analyses of matrix metalloproteinase 16 (MMP16), tissue inhibitor of metalloproteinase 2 (TIMP2), and VEGF. Extracellular matrix (ECM) functions to support intercellular communications, including the coupling of capillaries to muscle cells, which was worsened with increasing blood glucose. Multiple regression modeling from age- and health-diverse monkeys ( = 33) revealed that capillary density was negatively predicted by only fasting blood glucose. The loss of vascularity in SkM co-occurred with reduced expression of hypoxia-sensing genes, which is indicative of a disconnect between altered ECM and reduced endothelial cells, and known perfusion deficiencies present in PreT2D and T2D. This report supports that rising blood glucose values incite ECM remodeling and reduce SkM capillarization, and that targeting ECM would be a rational approach to improve health with metabolic disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7988770 | PMC |
http://dx.doi.org/10.1152/ajpregu.00240.2020 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Nursing Department, Zhang Ye People's Hospital Affiliated to Hexi University, Zhangye, Gansu, China.
Diabetes is a chronic lifelong condition that requires consistent self-care and daily lifestyle adjustments. Effective disease management involves regular blood glucose monitoring and ongoing nursing support. Inadequate education and poor self-management are key factors contributing to increased mortality among diabetic individuals.
View Article and Find Full Text PDFBr J Hosp Med (Lond)
January 2025
Department of Sports Arts, Hebei Sport University, Shijiazhuang, Hebei, China.
A novel exercise protocol for cardiac rehabilitation aerobic (CRA) has been developed by Hebei Sport University, demonstrating efficacy in patients with coronary heart disease (CHD). The objective of this study was to evaluate the impact of CRA on precise cardiac rehabilitation (CR) for CHD patients presenting with stable angina pectoris. The study cohort comprised patients with stable angina who were categorized into three groups: the CRA group (n = 35), the power bicycles (PB) group (n = 34), and the control group (n = 43).
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA.
The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood.
View Article and Find Full Text PDFNutrients
January 2025
Internal Medicine and Stroke Care Ward, Department of Promoting Health, Maternal-Infant, Excellence and Internal and Specialized Medicine (Promise) G. D'Alessandro, University of Palermo, 90127 Palermo, Italy.
Metabolic syndrome is a cluster of risk factors, including abdominal obesity, insulin resistance, hypertension, dyslipidemia (intended as an increase in triglyceride levels and a reduction in HDL cholesterol levels), and elevated fasting glucose, that increase the risk of cardiovascular disease and type 2 diabetes. With the rising prevalence of metabolic syndrome, effective dietary interventions are essential in reducing these health risks. The Mediterranean diet, rich in fruits, vegetables, whole grains, legumes, nuts, and olive oil and moderate in fish and poultry, has shown promise in addressing metabolic syndrome and its associated components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!