Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Radiotherapy (RT) has become one of the most widely used treatments for malignant tumors in clinics. Developing a novel radiosensitizer for the integration of precise diagnosis and effective radiotherapy against hypoxic tumors is desirable but remains a great challenge. Herein, protein sulfenic acid reactive gold nanoparticles as effective radiosensitizers were for the first time reported for enhanced X-ray computed tomography (CT) imaging and radiotherapy of tumors in vivo. The gold nanoparticles were decorated with biocompatible poly(ethylene glycol), folic acid (FA), and sulfenic acid reactive groups 1,3-cyclohexanedione (CHD). Such a nanostructure enables on-site immobilization within tumors under oxidative stress through the specific reaction between CHD and endogenous protein sulfenic acids resulting in enhanced accumulation and retention of gold nanoparticles within tumors, which remarkably improves the sensitivity of CT imaging and the radiotherapeutic efficacy of tumors in living mice. This study thus is the first to demonstrate that protein sulfenic acid reactive gold nanoparticles with a tumor anchoring function may serve as effective radiosensitizers for clinical X-ray theranostic application in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0nr06440h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!