and osteogenesis up-regulated by two-dimensional nanosheets through a macrophage-mediated pathway.

Biomater Sci

Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China. and Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China and Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008, China and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China and Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha 410008, China and Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha 410008, China.

Published: February 2021

Two-dimensional (2D) nanomaterials are attracting more and more interest in regenerative medicine due to their unique properties; however 2D biomimetic calcium mineral has not yet been developed and demonstrated application for bone tissue engineering. Here we described a novel calcium phosphate material with a 2D nanostructure that was synthesized using collagen and sodium alginate as the template. In vitro performance of the nanocrystalline material was evaluated, and we found that 2D CaP nanoparticles (NPs) enhanced the in vitro osteogenic differentiation of rat mesenchymal stem cells (rMSCs) through a macrophage-mediated signal pathway, when co-cultured with RAW 264.7 cells, rather than direct NP/stem cell interaction. A 2D topology structured surface was constructed by encapsulating the CaP nanomaterials in a gelatin hydrogel, which was demonstrated to be able to mediate in vivo ossification through a macrophage polarization related pathway in a femur defect rat model, and allowed the optimal therapeutic outcome compared to normal CaP counterparts. Our current work may have enlightened a new mechanism regarding NP-induced stem cell differentiation through immunoregulation, and the 2D CaP encapsulated hydrogel scaffold may serve as a potential alternative to autograft bone for orthopedic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0bm01596bDOI Listing

Publication Analysis

Top Keywords

osteogenesis up-regulated
4
up-regulated two-dimensional
4
two-dimensional nanosheets
4
nanosheets macrophage-mediated
4
macrophage-mediated pathway
4
pathway two-dimensional
4
two-dimensional nanomaterials
4
nanomaterials attracting
4
attracting interest
4
interest regenerative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!