gene network in the prefrontal cortex is associated with total brain volume in childhood.

J Psychiatry Neurosci

From the Integrated Program in Neuroscience (IPN), McGill University, Montréal, Que., Canada (Morgunova); the Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, Que., Canada (O'Donnell, Meaney, Silveira, Flores); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que., Canada (Flores); the Douglas Research Centre, Montréal, Que., Canada (Morgunova, Flores, Silveira); the Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montréal, Que., Canada (Pokhvisneva, O'Donnell, Meaney, Silveira); the Child and Brain Development Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ont., Canada (O'Donnell, Meaney); the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR; Meaney); the Department of Medical Psychology Charité Universitätsmedizin, Berlin, Germany (Nolvi, Buss); the FinnBrain Birth Cohort Study, Department of Clinical Medicine, University of Turku, Turku, Finland (Nolvi); the Development, Health and Disease Research Program, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, USA (Entringer, Wadhwa); the Institute of Medical Psychology, Charité-Universitätsmedizin Berlin, Berlin, Germany (Entringer); the Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Obstetrics and Gynecology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Epidemiology, School of Medicine, University of California, Irvine, CA, USA (Wadhwa); the Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Gilmore, Styner); the Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA (Styner); the Mood Disorders Program, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ont., Canada (Sassi); and the Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ont., Canada (Hall).

Published: November 2020

Background: Genetic variation in the guidance cue gene is linked to psychopathologies involving dysfunction in the prefrontal cortex. We created an expression-based polygenic risk score (ePRS) based on the coexpression gene network in the prefrontal cortex, hypothesizing that it would be associated with individual differences in total brain volume.

Methods: We filtered single nucleotide polymorphisms (SNPs) from genes coexpressed with in the prefrontal cortex obtained from an adult postmortem donors database (BrainEAC) for genes enriched in children 1.5 to 11 years old (BrainSpan). The SNPs were weighted by their effect size in predicting gene expression in the prefrontal cortex, multiplied by their allele number based on an individual's genotype data, and then summarized into an ePRS. We evaluated associations between the ePRS and total brain volume in children in 2 community-based cohorts: the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) and University of California, Irvine (UCI) projects. For comparison, we calculated a conventional PRS based on a genome-wide association study of total brain volume.

Results: Higher ePRS was associated with higher total brain volume in children 8 to 10 years old (β = 0.212, = 0.043; = 88). The conventional PRS at several different thresholds did not predict total brain volume in this cohort. A replication analysis in an independent cohort of newborns from the UCI study showed an association between the ePRS and newborn total brain volume (β = 0.101, = 0.048; = 80). The genes included in the ePRS demonstrated high levels of coexpression throughout the lifespan and are primarily involved in regulating cellular function.

Limitations: The relatively small sample size and age differences between the main and replication cohorts were limitations.

Conclusion: Our findings suggest that the coexpression network in the prefrontal cortex is critically involved in whole brain development during the first decade of life. Genes comprising the ePRS are involved in gene translation control and cell adhesion, and their expression in the prefrontal cortex at different stages of life provides a snapshot of their dynamic recruitment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7955849PMC
http://dx.doi.org/10.1503/jpn.200081DOI Listing

Publication Analysis

Top Keywords

prefrontal cortex
28
total brain
28
brain volume
20
network prefrontal
12
gene network
8
brain
8
children years
8
expression prefrontal
8
volume children
8
conventional prs
8

Similar Publications

Prior work highlighted that procrastination and impulsivity shared a common neuroanatomical basis in the dorsolateral prefrontal cortex, implying a tight relationship between these traits. However, theorists hold that procrastination is motivated by avoiding aversiveness, while impulsivity is driven by approaching immediate pleasure. Hence, exploring the common and distinct neural basis underlying procrastination and impulsivity through functional neuroimaging becomes imperative.

View Article and Find Full Text PDF

and formula alleviates depressive behaviors microglia regulation in an unpredictable chronic mild stress animal model.

J Tradit Complement Med

January 2025

Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.

Background And Aim: (CM) and (AM) are medicinal mushrooms with potential applications in the treatment of mood disorders, including depression and anxiety. While research suggests that both CM and AM possess anti-inflammatory properties and hold potential for treating depression when administered separately, there is limited knowledge about their efficacy when combined in a formula, as well as the underlying mechanism involving the modulation of microglia.

Experimental Procedure: Rats received oral administrations of the low-dose formulation, medium-dose formulation, and high-dose formulation over 28 consecutive days as part of the UCMS protocols.

View Article and Find Full Text PDF

Research on brain aging using resting-state functional magnetic resonance imaging (rs-fMRI) has typically focused on comparing "older" adults to younger adults. Importantly, these studies have often neglected the middle age group, which is also significantly impacted by brain aging, including by early changes in motor, memory, and cognitive functions. This study aims to address this limitation by examining the resting state networks in middle-aged adults via an exploratory whole-brain ROI-to-ROI analysis.

View Article and Find Full Text PDF

The integration of self-efficacy and response-efficacy in decision making.

Sci Rep

January 2025

Department of Psychology, Rutgers University, 101 Warren Street, Smith Hall-Room 301, Newark, NJ, 07102, USA.

The belief that we can exert an influence in our environment is dependent on distinct components of perceived control. Here, we investigate the neural representations that differentially code for self-efficacy (belief in successfully executing a behavior) and response-efficacy (belief that the behavior leads to an expected outcome) and how such signals may be integrated to inform decision-making. Participants provided confidence ratings related to executing a behavior (self-efficacy), and the potential for a rewarding outcome (response-efficacy).

View Article and Find Full Text PDF

The orbitofrontal cortex (OFC) is a large cortical structure, expansive across anterior-posterior axes. It is essential for flexibly updating learned behaviors, and paradoxically, also implicated in inflexible and compulsive-like behaviors. Here, we investigated mice bred to display inflexible reward-seeking behaviors that are insensitive to action consequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!