One of the primary goals of macroevolutionary biology has been to explain general trends in long-term diversity patterns, including whether such patterns correspond to an upscaling of processes occurring at lower scales. Reconstructed phylogenies often show decelerated lineage accumulation over time. This pattern has often been interpreted as the result of diversity-dependent (DD) diversification, where the accumulation of species causes diversification to decrease through niche filling. However, other processes can also produce such a slowdown, including time dependence without diversity dependence. To test whether phylogenetic branching patterns can be used to distinguish these two mechanisms, we formulated a time-dependent, but diversity-independent model that matches the expected diversity through time of a DD model. We simulated phylogenies under each model and studied how well likelihood methods could recover the true diversification mode. Standard model selection criteria always recovered diversity dependence, even when it was not present. We correct for this bias by using a bootstrap method and find that neither model is decisively supported. This implies that the branching pattern of reconstructed trees contains insufficient information to detect the presence or absence of diversity dependence. We advocate that tests encompassing additional data, for example, traits or range distributions, are needed to evaluate how diversity drives macroevolutionary trends.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898657PMC
http://dx.doi.org/10.1111/evo.14124DOI Listing

Publication Analysis

Top Keywords

diversity dependence
12
branching patterns
8
diversity-dependent diversification
8
diversity
6
diversification
5
model
5
patterns phylogenies
4
phylogenies distinguish
4
distinguish diversity-dependent
4
diversification time-dependent
4

Similar Publications

Chronic pain is a wide-spread condition that is debilitating and expensive to manage, costing the United States alone around $600 billion in 2010. In a common symptom of chronic pain called allodynia, non-painful stimuli produce painful responses with highly variable presentations across individuals. While the specific mechanisms remain unclear, allodynia is hypothesized to be caused by the dysregulation of excitatory-inhibitory (E-I) balance in pain-processing neural circuitry in the dorsal horn of the spinal cord.

View Article and Find Full Text PDF

Novel Protective Role for Gut Microbiota-derived Metabolite PAGln in Doxorubicin-induced Cardiotoxicity.

Cardiovasc Drugs Ther

January 2025

Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.

Purpose: Doxorubicin (Dox) is a classic anthracycline chemotherapy drug with cause cumulative and dose-dependent cardiotoxicity. This study aimed to investigate the potential role and molecular mechanism of phenylacetylglutamine (PAGln), a novel gut microbiota metabolite, in Dox-induced cardiotoxicity (DIC).

Methods: DIC models were established in vivo and in vitro, and a series of experiments were performed to verify the cardioprotective effect of PAGln.

View Article and Find Full Text PDF

Research has shown that married individuals live longer lives than unmarried women and men. A smaller number of studies have included non-marital cohabitation and have found that their mortality falls between the married and other unmarried groups. There are indications that the cohabiting population is diverse in terms of mortality risk, yet very little is known about how the association is related to age and stages of the life course.

View Article and Find Full Text PDF

Pectin is an acidic heteropolysaccharide with natural, green, and inexpensive characteristics. Compared to polysaccharides, oligosaccharides are more easily utilized by the body, and the physiological function of hawthorn pectin oligosaccharides (POS) may vary depending on their degree of polymerization (DP). Therefore, we mainly studied the effects of hawthorn pectin (HP) and POS with different DP on gut microbiota disorders induced by high-fat diet (HFD).

View Article and Find Full Text PDF

Pressure-dependent kinetic analysis of the NH potential energy surface.

Phys Chem Chem Phys

January 2025

Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.

The pressure-dependent reactions on the NH potential energy surface (PES) have been investigated using CCSD(T)-F12/aug-cc-pVTZ-F12//B2PLYP-D3/aug-cc-pVTZ. This study expands the NH PES beyond the previous literature by incorporating a newly identified isomer, NHN, along with additional bimolecular reaction channels associated with this isomer, namely NNH + H and HNN(S) + H. Rate coefficients for all relevant pressure-dependent reactions, including well-skipping pathways, are predicted using a combination of transition state theory and master equation simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!