Exploring the folding process of human βB2-crystallin using multiscale molecular dynamics and the Markov state model.

Phys Chem Chem Phys

Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.

Published: December 2020

Adequate knowledge of protein conformations is crucial for understanding their function and their association properties with other proteins. The cataract disease is correlated with conformational changes in key proteins called crystallins. These changes are due to mutations or post-translational modifications that may lead to protein unfolding, and thus the formation of aggregate states. Human βB2-crystallin (HβB2C) is found in high proportion in the eye lens, and its mutations are related to some cataracts. HβB2C also associates into dimers, tetramers, and other higher-order supramolecular complexes. However, it is the only protein of the βγ-crystallin family that has been found in an extended conformation. Therefore, we hypothesize that the extended conformation is not energetically favourable and that HβB2C may adopt a closed (completely folded) conformation, similar to the other members of the βγ-crystallin family. To corroborate this hypothesis, we performed extensive molecular dynamics simulations of HβB2C in its monomeric and dimeric conformations, using all-atom and coarse-grained scales. We employed Markov state model (MSM) analysis to characterize the conformational and kinetically relevant states in the folding process of monomeric HβB2C. The MSM analysis clearly shows that HβB2C adopts a completely folded structure, and this conformation is the most kinetically and energetically favourable one. In contrast, the extended conformations are kinetically unstable and energetically unfavourable. Our MSM analysis also reveals a key metastable state, which is particularly interesting because it is from this state that the folded state is reached. The folded state is stabilized by the formation of two salt bridges between the residue-pairs E74-R187 and R97-E166 and the two hydrophobic residue-pairs V59-L164 and V72-V151. Furthermore, free energy surface (FES) analysis revealed that the HβB2C dimer with both monomers in a closed conformation (face-en-face dimer) is energetically more stable than the domain-swapped dimer (crystallographic structure). The results presented in this report shed light on the molecular details of the folding mechanism of HβB2C in an aqueous environment and may contribute to interpreting different experimental findings. Finally, a detailed knowledge of HβB2C folding may be key to the rational design of potential molecules to treat cataract disease.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp04136jDOI Listing

Publication Analysis

Top Keywords

msm analysis
12
hβb2c
9
folding process
8
human βb2-crystallin
8
molecular dynamics
8
markov state
8
state model
8
cataract disease
8
βγ-crystallin family
8
extended conformation
8

Similar Publications

Perceived risk for HIV acquisition among gay, bisexual, and other men who have sex with men (GBMSM) may not align with their actual sexual HIV exposure. Factors associated with low/moderate perceived risk among GBMSM eligible for pre-exposure prophylaxis (PrEP) (based on their high estimated HIV exposure) have been poorly described in Latin America. This is a secondary analysis of a 2018 web-based cross-sectional survey in Brazil, Mexico, and Peru.

View Article and Find Full Text PDF

In Guangxi, the number of newly diagnosed HIV-1 infections among students is continuously increasing, highlighting the need for a detailed understanding of local transmission dynamics, particularly focusing on key drivers of transmission. We recruited individuals newly diagnosed with HIV-1 in Nanning, Guangxi, and amplified and sequenced the HIV-1 pol gene to construct a molecular network. Bayesian phylogenetic analysis was utilized to identify migration events, and multivariable logistic regression was employed to analyze factors influencing clustering and high linkage.

View Article and Find Full Text PDF

The global human immunodeficiency virus 1 (HIV-1) pandemic is driven by the extraordinary genetic diversity of the virus, largely resulting from frequent recombination events. These events generate circulating recombinant forms (CRFs) and unique recombinant forms, which significantly contribute to the complexity of HIV-1 epidemiology, especially within key populations, such as men who have sex with men (MSM). Here, we identified three novel HIV-1 recombinant strains consisting of the CRF01_AE and CRF07_BC subtypes from HIV-positive MSM in Baoding City, Hebei Province, China.

View Article and Find Full Text PDF

While all native tRNAs undergo extensive post-transcriptional modifications as a mechanism to regulate gene expression, mapping these modifications remains challenging. The critical barrier is the difficulty of readthrough of modifications by reverse transcriptases (RTs). Here we use Induro-a new group-II intron-encoded RT-to map and quantify genome-wide tRNA modifications in Induro-tRNAseq.

View Article and Find Full Text PDF

Combating syphilis resurgence: China's multifaceted approach.

Biosci Trends

January 2025

Shenzhen Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China.

Syphilis, a chronic infection caused by Treponema pallidum, is experiencing a global resurgence, posing significant public health challenges. This study examined the escalating trends of syphilis in the United States, China, and some other countries highlighting the impact of the COVID-19 pandemic, changes in sexual behavior, coinfection with the other infectious diseases such as AIDs, and the role of public health funding. The analysis revealed a stark increase in syphilis cases, particularly among high-risk groups such as men who have sex with men (MSM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!