Loss of orf3b in the circulating SARS-CoV-2 strains.

Emerg Microbes Infect

Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.

Published: December 2020

The newly emerged betacoronavirus, SARS-CoV-2, causes the COVID-19 pandemic since December 2019 with more than 35 million laboratory confirmed human infections and over one million deaths within nine months. The genome of SARS-CoV-2 continues to evolve during the global transmission with the notable emergence of the spike D614G substitution that enhances infectivity. Some of these viral adaptations may alter not only the infectivity but also viral pathogenesis. Continuous phylogenomic analysis of circulating viral strains and functional investigation of new non-synonymous substitutions may help to understand the evolution of virus, its virulence and transmissibility. Here we describe a loss of an accessory protein orf3b (57 amino acids) in current circulating SARS-CoV-2 strains, contributing around 24% of more than 100,000 complete viral genomes analysed. The loss of 3b is caused by the presence of an early stop codon which is created by an orf3a Q57H substitution. There is an increasing trend in the loss of orf3b which has reached 32% in May 2020. Geographically, loss of 3b is more prevalent in certain countries including Colombia (46%), USA (48%), South Korea (51%), France (66%), Saudi Arabia (72%), Finland (76%) and Egypt (77%). Interestingly, the loss of 3b coincides with the emergence of spike D614G substitution. In addition, we found that truncated orf3b has lost the interferon antagonism compared to the full-length orf3b, suggesting a loss of function by the newly adapted virus. Further investigation of orf3b deletion and spike D614G substitution on virulence and infectivity respectively will provide important insights into SARS-CoV-2 evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782295PMC
http://dx.doi.org/10.1080/22221751.2020.1852892DOI Listing

Publication Analysis

Top Keywords

spike d614g
12
d614g substitution
12
loss orf3b
8
circulating sars-cov-2
8
sars-cov-2 strains
8
emergence spike
8
infectivity viral
8
loss
7
sars-cov-2
5
orf3b
5

Similar Publications

Introduction: Since its isolation in the UK, the SARS-CoV-2 Delta variant has become an epidemic. This study aimed to decipher the viral appearance and genomic characterization of the Delta variant isolated from patients in the Kurdistan region of Iraq.

Methodology: Samples were collected from the West Erbil Emergency Hospital, and infection by SARS-CoV2 was confirmed using Real-Time PCR.

View Article and Find Full Text PDF

Introduction: Mutations occurring in the spike (S) protein of SARS-CoV-2 enables the virus to evade COVID-19 vaccine- and infection-induced immunity.

Methods: Here we provide a comprehensive analysis of humoral and cell-mediated immunity in 111 healthcare workers who received three or four vaccine doses and were followed up to 12 and 6 months, respectively, after the last vaccine dose. Omicron breakthrough infection occurred in 71% of the vaccinees, enabling evaluation of vaccine- and vaccine/infection-induced hybrid immunity.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 is evolving, resulting in new variants like XEC, which has specific mutations (T22N and F59S) in the spike protein that affect how the virus interacts with neutralizing antibodies.
  • The study analyzed immune responses from different vaccinated groups and found that XEC had significantly lower neutralization levels due to the F59S mutation, but removing certain glycosylation sites could restore these levels.
  • The research highlights that mutations in the N-terminal domain of the spike protein play a crucial role in the virus's ability to evade the immune system and change its structural properties.
View Article and Find Full Text PDF

Inactivation of Pseudovirus Expressing the D614G Spike Protein Mutation using Nitric Oxide-Plasma Activated Water.

Adv Sci (Weinh)

December 2024

Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, South Korea.

Variants of concern (VOCs) of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) exhibit high infectivity due to mutations, particularly in the spike protein, that facilitate enhanced binding of virus to human angiotensin-converting enzyme 2 (hACE2). The D614G mutation, situated in S1-domain, promotes the open conformation of spike protein, augmenting its interaction with hACE2. Activated water neutralizes pathogens by damaging biological molecules; however, its effect on mutated SARS-CoV-2 or VOCs requires further exploration.

View Article and Find Full Text PDF

Longitudinal effects of SARS-CoV-2 breakthrough infection on imprinting of neutralizing antibody responses.

EBioMedicine

December 2024

Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany; Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany. Electronic address:

Background: The impact of the infecting SARS-CoV-2 variant of concern (VOC) and the vaccination status was determined on the magnitude, breadth, and durability of the neutralizing antibody (nAb) profile in a longitudinal multicentre cohort study.

Methods: 173 vaccinated and 56 non-vaccinated individuals were enrolled after SARS-CoV-2 Alpha, Delta, or Omicron infection and visited four times within 6 months and nAbs were measured for D614G, Alpha, Delta, BA.1, BA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!