The development of effective and safe tumor nanotheranostics remains a research imperative. Herein, tumor microenvironment (TME)-responsive Fe(III)-porphyrin (TCPP) coordination nanoparticles (FT@HA NPs) were prepared using a simple one-pot method followed by modification with hyaluronic acid (HA). FT@HA NPs specifically accumulated in CD44 receptor-overexpressed tumor tissues through the targeting property of HA and upon endocytosis by tumor cells. After cell internalization, intracellular acidic microenvironments and high levels of glutathione (GSH) triggered the rapid decomposition of FT@HA NPs to release free TCPP molecules and Fe(III) ions. The released Fe(III) ions could trigger GSH depletion and Fenton reaction, activating chemodynamic therapy (CDT). Meanwhile, the fluorescence and photodynamic effects of the TCPP could be also activated, achieving controlled reactive oxygen species (ROS) generation and avoiding side effects on normal tissues. Moreover, the rapid consumption of GSH further enhanced the efficacy of CDT and photodynamic therapy (PDT). The experiments further demonstrated that the antitumor effect of these nanotheranostics was significantly enhanced and that their toxicity and side effects against normal tissues were effectively suppressed. The FT@HA NPs can be applied for activated tumor combination therapy under the guidance of dual-mode imaging including fluorescence imaging and magnetic resonance imaging, providing an effective strategy for the design and preparation of TME-responsive multifunctional nanotheranostics for precise tumor imaging and combination therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c14046 | DOI Listing |
Colloids Surf B Biointerfaces
July 2024
School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211100, China. Electronic address:
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease with complex pathogenesis. Single chemotherapy struggles to eliminate the disease permanently and reduce the pain owing to drug resistance and inadequate delivery to target cells. This study developed hyaluronic acid (HA)-modified and methotrexate (MTX)-load metal-organic frameworks (denoted as FT-HA-MTX NPs), combining photothermal therapy (PTT), photodynamic therapy (PDT), and chemotherapy to inhibit the progression of RA.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
The development of effective and safe tumor nanotheranostics remains a research imperative. Herein, tumor microenvironment (TME)-responsive Fe(III)-porphyrin (TCPP) coordination nanoparticles (FT@HA NPs) were prepared using a simple one-pot method followed by modification with hyaluronic acid (HA). FT@HA NPs specifically accumulated in CD44 receptor-overexpressed tumor tissues through the targeting property of HA and upon endocytosis by tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!