The domestic dog is assumed by nearly everyone to be the consummate smeller. Within the species Canis familiaris individual breeds, such as the bloodhound or beagle, are known as olfactory stars. These are "scent breeds," a grouping variably defined as a genetic clade or breed class commonly used for scent detection tasks. Previous work suggests that the dog has a more robust olfactory anatomy than many mammal species. Now we undertake a closer investigation of the dog's olfactory system, both in relationship to its closest wild relatives, the wolf and coyote, and across individual breeds. First, we seek to resolve whether the dog has lost olfactory capacity through its domestication from the wolf lineage. Second, we test the inertial lore that among dogs, "scent breeds," have a superior olfactory facility. As a measure of relative olfactory capacity, we look to the cribriform plate (CP), a bony cup in the posterior nasal cavity perforated by passageways for all olfactory nerve bundles streaming from the periphery to the brain. Using high-resolution computed tomography (CT) scans and digital quantification, we compare relative CP size in 46 dog breeds, the coyote and gray wolf. Results show the dog has a reduced CP surface area relative to the wolf and coyote. Moreover, we found no significant differences between CP size of "scent" and "non-scent" breeds. Our study suggests that the dog lost olfactory capacity as a result of domestication and this loss was not recovered in particular breed groupings through directed artificial selection for increased olfactory facility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ar.24518 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!