Purpose: Genetic and epigenetic alterations are involved in pituitary adenoma pathogenesis, however the molecular basis of proliferative nonfunctioning pituitary adenomas (NFPAs) remains unclear. Here, we analyzed integrated multi-omics profiling including copy number variation (CNV), DNA methylation and gene expression of 8 NFPAs.
Methods: We collected 4 highly proliferative (hpNFPA, Ki-67 ≥ 3) and 4 lowly proliferative (Ki-67 ≤ 1) NFPAs, and comprehensively assessed CNV, DNA methylation, and gene expression by Illumina HumanMethylation450 BeadChip and Affymetrix GeneChip PrimeView Human Gene Expression Array. We performed Ingenuity Pathway Analysis (IPA) for differentially expressed genes to illustrate aberrant pathways and delineated protein-protein networks of selected key genes in dysregulated pathways.
Results: Aberrant arm level CNV, dysregulated DNA methylation, and associated impacts on gene expressions were observed in 2 early occurring hpNFPAs. Chromosomal losses were associated with attenuated expression of DNA methyltransferases, further altering global methylation in these 2 samples. Correlation analysis between DNA methylation and gene expression in 8 NFPAs indicates methylation in promoter and gene body regions are both involved in gene regulation. IPA showed PPARα/RXRα, dopamine receptor signaling, cAMP-mediated signaling, and calcium signaling were all activated, while p38 MAPK and ERK5 signaling were inhibited in hpNFPAs. Moreover, selected key gene networks in hpNFPAs exhibited concurrent methylation status and expression levels of adenylate cyclase genes, G protein subunits, HLA genes, CXCL12, and CCL2.
Conclusion: This study presents comprehensive multi-omics views of CNV, DNA methylation, and gene expression in 8 NFPAs. Pathway analysis and network maps of key genes provide clues to elucidate the molecular basis of hpNFPA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11102-020-01109-0 | DOI Listing |
Clin Rev Allergy Immunol
January 2025
Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
In recent years, epigenetic modifications have attracted significant attention due to their unique regulatory mechanisms and profound biological implications. Acting as a bridge between environmental stimuli and changes in gene activity, they reshape gene expression patterns, providing organisms with regulatory mechanisms to respond to environmental changes. A growing body of evidence indicates that epigenetic regulation plays a crucial role in the pathogenesis and progression of psoriasis.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.
View Article and Find Full Text PDFSci Rep
January 2025
Section of Self, Affect and Neuroscience, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
Social cognition, which ranges from recognizing social cues to intricate inferential reasoning, is influenced by environmental factors and epigenetic mechanisms. Notably, methylation variations in stress-related genes like brain-derived neurotrophic factor (BDNF) and the oxytocin receptor (OXTR) are linked to distinct social cognitive functions and exhibit sex-specific differences. This study investigates how these methylation differences affect social cognition across sexes, focusing on both perceptual and inferential cognitive levels.
View Article and Find Full Text PDFClin Immunol
January 2025
Department of Rheumatology, Qilu Hospital of Shandong University(Qingdao), Qingdao, China. Electronic address:
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disease linked to epigenetic changes, particularly DNA methylation. While LDLRAD4 has been implicated in RA through GWAS, its role in RA via methylation remains unclear.
Objectives: To investigate LDLRAD4 methylation patterns in RA and evaluate its potential as a diagnostic and inflammatory biomarker.
J Gerontol A Biol Sci Med Sci
January 2025
Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
Deoxyribonucleic acid (DNA) methylation (DNAm) clocks estimate biological age according to DNA methylation. This study investigated the associations between measures of physical function and physical performance and ten DNAm clocks in the oldest-old in Singapore. The SG90 cohort included a subset of community-dwelling oldest-old from the Singapore Chinese Health Study (SCHS) and Singapore Longitudinal Ageing Study (SLAS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!