Dengue is a public health problem with around 390 million cases annually and is caused by four distinct serotypes. Infection by one of the serotypes provides lifelong immunity to that serotype but have a higher chance of attracting the more dangerous forms of dengue in subsequent infections. Therefore, a perfect strategy against dengue is required. Dengue vaccine with 42-80% efficacy level has been licensed for the use in reducing disease transmission. However, this may increase the likelihood of obtaining the dangerous forms of dengue. In this paper, we have developed single and two-serotype dengue mathematical models to investigate the effects of vaccination on dengue transmission dynamics. The model is validated against dengue data from Kupang city, Indonesia. We investigate the effects of vaccination on seronegative and seropositive individuals and perform a global sensitivity analysis to determine the most influential parameters of the model. A sensitivity analysis suggests that the vaccination rate, the transmission probability and the biting rate have greater effects on the reduction of the proportion of dengue cases. Interestingly, with vaccine implementation, the mosquito-related parameters do not have significant impact on the reduction in the proportion of dengue cases. If the vaccination is implemented on seronegative individuals only, it may increase the likelihood of obtaining the severe dengue. To reduce the proportion of severe dengue cases, it is better to vaccinate seropositive individuals. In the context of Kupang City where the majority of individuals have been infected by at least one dengue serotype, the implementation of vaccination strategy is possible. However, understanding the serotype-specific differences is required to optimise the delivery of the intervention.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7648192 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2020.e05345 | DOI Listing |
Unlabelled: The yellow fever mosquito ( ) is an organism of high medical importance because it is the primary vector for diseases such as yellow fever, Zika, dengue, and chikungunya. Its medical importance has made it a subject of numerous efforts to understand their biology. One such effort, was the development of a high-quality reference genome (AaegL5).
View Article and Find Full Text PDFOne Health
June 2025
Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.
Controlling insect pests that destroy crop and spread diseases will become increasingly crucial for addressing the food demands of a growing global population and the expansion of vector-borne diseases. A key challenge is the development of a balanced approach for sustainable food production and disease control in 2050 and beyond. Microbial biopesticides, derived from bacteria, viruses, fungi, protozoa, or nematodes, offer potentially significant benefits for promoting One Health and contributing to several United Nations Sustainable Development Goals (SDGs).
View Article and Find Full Text PDFPak J Med Sci
January 2025
Muhammad Ali Mumtaz, MD FACS. Tahir Heart Institute, Fazl-e-Omar Hospital, Chenab Nagar, District Chiniot, Pakistan.
Infective endocarditis used to frequently cause mortality in subjects having PDA before the advent of antibiotics and surgical ligation. It has been documented that clinically silent PDAs may cause infective complications of heart valves. We present case of an 18-years-old male who presented with palpitations and fever to our emergency department.
View Article and Find Full Text PDFInfect Ecol Epidemiol
January 2025
School of Medicine, The Maldives National University, Malé, Maldives.
Background: Dengue fever (DF) is endemic in Pakistan, posing health risks. Recent flooding in 2022 and strong monsoon rains in 2024 have increased the possibility of an epidemic. It is an infectious disease having potentially severe outcomes including thrombocytopenia.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Institute of Biological Sciences, Federal University of Pará, Belem, Pará, Brazil.
Background: Mosquito-borne diseases have a significant public health threat worldwide, with arboviruses accounting for a high proportion of infectious diseases and mortality annually. Brazil, in particular, has been suffering outbreaks of diseases transmitted by mosquito viruses, notably those of the genus, such as dengue, Zika, and chikungunya. Against this background, the São Paulo Zoo is an intriguing ecological niche to explore the virome of mosquitoes, potentially shedding light on the dynamics of arbovirus transmission within a confined setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!