Co/SSZ-13 zeolites were prepared by heating the finely dispersed mixture of NH-SSZ-13 and different cobalt salts up to 550 °C. Investigations by thermogravimetry - differential scanning calorimetry - mass spectrometry provided new insight into details of the solid-state reaction. Formation of Co carrying hydrate melt or volatile species was shown to proceed from chloride, nitrate, or acetylacetonate Co precursor salts upon thermal treatment. This phase change allows the transport of the Co species into the zeolite pores. The reaction of the NH or H zeolite cations and the mobile Co precursors generates vapor or gas products, readily leaving the zeolite pores, and cobalt ions in lattice positions suggesting that solid-state ion-exchange is the prevailing process. The obtained catalysts are of good activity and N selectivity in the CH/NO-SCR reaction. The thermal treatment of acetate or formate salts give solid intermediates that are unable to get in contact and react with the cations in the zeolite micropores. These catalysts contain mainly Co-oxide clusters located on the outer surface of the zeolite crystallites and have poor catalytic performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645688PMC
http://dx.doi.org/10.1002/open.202000239DOI Listing

Publication Analysis

Top Keywords

thermal treatment
8
zeolite pores
8
zeolite
6
evaluation co/ssz-13
4
co/ssz-13 zeolite
4
zeolite catalysts
4
catalysts prepared
4
prepared solid-phase
4
reaction
4
solid-phase reaction
4

Similar Publications

Extreme ultraviolet (EUV) lithography has enabled significant reductions in device dimensions but is often limited by capillary force-driven pattern collapse in conventional wet processes. Recent dry-development approaches, while promising, frequently require toxic etchants or specialized equipment, limiting their broader applicability and highlighting the need for more sustainable, cost-effective alternatives. In this study, highly reactive, etchant-free dry-developable EUV photoresists using N-heterocyclic carbene (NHC)-based metal-ligand complexes, achieving half-saturation at EUV doses of 8.

View Article and Find Full Text PDF

Theoretical Study on the Kinetics of Secondary Oxygen Addition Reactions for N-Butyl Radicals.

J Phys Chem A

January 2025

Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Chemical kinetics for second oxygen addition reactions (·QOOH + O) of long-chain alkanes are of great importance in low-temperature combustion technologies. However, kinetic data for key reactions of ·QOOH + O systems are often difficult to obtain experimentally and are primarily estimated or calculated by using theoretical methods. In this work, barrier heights (BHs), reaction energies (Δs), and relative energies (REs) of stationary points for key reactions of two representative ·QOOH + O systems in the low-temperature oxidation of -butyl as well as pressure-dependent rate constants for the involved reactions are calculated with the high-level quantum chemical method CCSD(T)-F12b/CBS.

View Article and Find Full Text PDF

Molecular and Immunological Characterization of Troponin C: An Allergen from .

J Agric Food Chem

January 2025

College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, National & Local Joint Engineering Research Center of Processing Technology for Aquatic Products, Jimei University, Xiamen, Fujian 361021, China.

, a crustacean of substantial importance, is a frequent trigger of food allergies. This study examined the molecular and immunological properties of troponin C from (Scy p TnC) as an allergen. The findings indicated that thermal stability of Scy p TnC comprised 150 amino acids and facilitated the induction of CD63/CD203c in basophils from crab allergy patients.

View Article and Find Full Text PDF

Advances in magnetic nanoparticles for molecular medicine.

Chem Commun (Camb)

January 2025

F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.

Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine.

View Article and Find Full Text PDF

Japanese quails () are sensitive to zinc (Zn) deficiency, a mineral essential for growth, development, and bone health. This study evaluated the effects of different levels of Zn in the diet on zootechnical performance, organ and carcass weight, and tibial breakage resistance in quails from 1 to 42 days of age. A 5 × 2 factorial design was used, consisting of five Zn levels (30, 60, 90, 120, and 150 mg/kg) and two thermal environments (thermal comfort and heat stress), with five replicates of 10 birds per treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!