Convolutional neural net face recognition works in non-human-like ways.

R Soc Open Sci

Psychology, Faculty of Natural Sciences, University of Stirling, FK9 4LA, Scotland.

Published: October 2020

Convolutional neural networks (CNNs) give the state-of-the-art performance in many pattern recognition problems but can be fooled by carefully crafted patterns of noise. We report that CNN face recognition systems also make surprising 'errors'. We tested six commercial face recognition CNNs and found that they outperform typical human participants on standard face-matching tasks. However, they also declare matches that humans would not, where one image from the pair has been transformed to appear a different sex or race. This is not due to poor performance; the best CNNs perform almost perfectly on the human face-matching tasks, but also declare the most matches for faces of a different apparent race or sex. Although differing on the salience of sex and race, humans and computer systems are not working in completely different ways. They tend to find the same pairs of images difficult, suggesting some agreement about the underlying similarity space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7657890PMC
http://dx.doi.org/10.1098/rsos.200595DOI Listing

Publication Analysis

Top Keywords

face recognition
12
convolutional neural
8
face-matching tasks
8
tasks declare
8
declare matches
8
sex race
8
neural net
4
net face
4
recognition
4
recognition works
4

Similar Publications

Background: Acute pain management is critical in postoperative care, especially in vulnerable patient populations that may be unable to self-report pain levels effectively. Current methods of pain assessment often rely on subjective patient reports or behavioral pain observation tools, which can lead to inconsistencies in pain management. Multimodal pain assessment, integrating physiological and behavioral data, presents an opportunity to create more objective and accurate pain measurement systems.

View Article and Find Full Text PDF

The human visual system possesses a remarkable ability to detect and process faces across diverse contexts, including the phenomenon of face pareidolia--seeing faces in inanimate objects. Despite extensive research, it remains unclear why the visual system employs such broadly tuned face detection capabilities. We hypothesized that face pareidolia results from the visual system's optimization for recognizing both faces and objects.

View Article and Find Full Text PDF

Reading, face recognition, and navigation are supported by visuospatial computations in category-selective regions across ventral, lateral, and dorsal visual streams. However, the nature of visuospatial computations across streams and their development in adolescence remain unknown. Using fMRI and population receptive field (pRF) modeling in adolescents and adults, we estimate pRFs in high-level visual cortex and determine their development.

View Article and Find Full Text PDF

Objective: Extracting named entities from clinical free-text presents unique challenges, particularly when dealing with discontinuous entities-mentions that are separated by unrelated words. Traditional NER methods often struggle to accurately identify these entities, prompting the development of specialised computational solutions. This paper systematically reviews and presents the methodologies developed for Discontinuous Named Entity Recognition in clinical texts, highlighting their effectiveness and the challenges they face.

View Article and Find Full Text PDF

Background: Deficits in emotion recognition have been shown to be closely related to social-cognitive functioning in schizophrenic. This study aimed to investigate the event-related potential (ERP) characteristics of social perception in schizophrenia patients and to explore the neural mechanisms underlying these abnormal cognitive processes related to social perception.

Methods: Participants included 33 schizophrenia patients and 35 healthy controls (HCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!