Purpose: Stable slipped capital femoral epiphysis (SCFE) is often treated with pinning, with the current gold standard being stabilization with a screw perpendicular to the physis. However, this can lead to impingement and a potentially unstable construct. In this study we model the biomechanical effect of two screw positions used for SCFE fixation. We hypothesize that single screw fixation into the centre of the femoral head from the anterior intertrochanteric line (the Universal Entry Point or UEP) provides a more stable construct than single screw fixation perpendicular to the physis with an anterior starting point.

Methods: Sawbone models of moderate SCFE were used to mechanically test the two screw constructs and an unfixed control group. Models were loaded to failure with a shear load applied through the physis in an Instron mechanical tester. The primary outcomes were maximum load, stiffness and energy to failure.

Results: Screw fixation into the centre of the femoral head from the UEP resulted in a greater load to failure (+19%), stiffness (+13%) and energy to failure (+45%) than screw fixation perpendicular to the physis.

Conclusions: In this sawbone construct, screw fixation into the centre of the femoral head from the UEP provides greater biomechanical stability than screw fixation perpendicular to the physis. This approach may also benefit by avoiding an intracapsular entry point in soft metaphyseal bone and subsequent risk of impingement and loss of position.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7666795PMC
http://dx.doi.org/10.1302/1863-2548.14.190178DOI Listing

Publication Analysis

Top Keywords

screw fixation
24
fixation perpendicular
16
perpendicular physis
16
entry point
12
fixation centre
12
centre femoral
12
femoral head
12
screw
10
universal entry
8
fixation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!