Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Circulating tumor cells (CTCs) are widely known as useful biomarkers in the liquid biopsies of cancer patients. Although single-cell genetic analysis of CTCs is a promising diagnostic tool that can provide detailed clinical information for precision medicine, the capacity of single-CTC isolation for genetic analysis requires improvement. To overcome this problem, we previously developed a multiple single-cell encapsulation system for CTCs using hydrogel-encapsulation, which allowed for the high-throughput isolation of single CTCs. However, isolation of a single cell from adjacent cells remained difficult and often resulted in contamination by neighboring cells due to the limited resolution of the generated hydrogel. We developed a novel multiple single-cell encapsulation system equipped with a high magnification lens for high throughput and a more accurate single-cell encapsulation. The multiple single-cell encapsulation system has sufficient sensitivity to detect immune-stained CTCs, and could also generate a micro-scaled hydrogel that can isolate a single cell from adjacent cells within 10 µm, with high efficiency. The proposed system enables high throughput and accurate single-cell manipulation and genome amplification without contamination from neighboring cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645638 | PMC |
http://dx.doi.org/10.1002/elsc.202000024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!