Boosting template-based SSVEP decoding by cross-domain transfer learning.

J Neural Eng

Swartz Center for Computational Neuroscience, Institude of Neural Computation, University of California - San Diego, La Jolla, California 92122, United States of America.

Published: February 2021

. This study aims to establish a generalized transfer-learning framework for boosting the performance of steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) by leveraging cross-domain data transferring.. We enhanced the state-of-the-art template-based SSVEP decoding through incorporating a least-squares transformation (LST)-based transfer learning to leverage calibration data across multiple domains (sessions, subjects, and electroencephalogram montages).. Study results verified the efficacy of LST in obviating the variability of SSVEPs when transferring existing data across domains. Furthermore, the LST-based method achieved significantly higher SSVEP-decoding accuracy than the standard task-related component analysis (TRCA)-based method and the non-LST naive transfer-learning method.. This study demonstrated the capability of the LST-based transfer learning to leverage existing data across subjects and/or devices with an in-depth investigation of its rationale and behavior in various circumstances. The proposed framework significantly improved the SSVEP decoding accuracy over the standard TRCA approach when calibration data are limited. Its performance in calibration reduction could facilitate plug-and-play SSVEP-based BCIs and further practical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/abcb6eDOI Listing

Publication Analysis

Top Keywords

ssvep decoding
12
transfer learning
12
template-based ssvep
8
lst-based transfer
8
learning leverage
8
calibration data
8
existing data
8
accuracy standard
8
data
5
boosting template-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!