Unraveling the Molecular Players at the Cholinergic Efferent Synapse of the Zebrafish Lateral Line.

J Neurosci

Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina

Published: January 2021

The lateral line (LL) is a sensory system that allows fish and amphibians to detect water currents. LL responsiveness is modulated by efferent neurons that aid in distinguishing between external and self-generated stimuli, maintaining sensitivity to relevant cues. One component of the efferent system is cholinergic, the activation of which inhibits afferent activity. LL hair cells (HCs) share structural, functional, and molecular similarities with those of the cochlea, making them a popular model for studying human hearing and balance disorders. Because of these commonalities, one could propose that the receptor at the LL efferent synapse is a α9α10 nicotinic acetylcholine receptor (nAChR). However, the identities of the molecular players underlying ACh-mediated inhibition in the LL remain unknown. Surprisingly, through the analysis of single-cell expression studies and hybridization, we describe that α9, but not the α10, subunits are enriched in zebrafish HCs. Moreover, the heterologous expression of zebrafish α9 subunits indicates that homomeric receptors are functional and exhibit robust ACh-gated currents blocked by α-bungarotoxin and strychnine. In addition, Ca imaging on mechanically stimulated zebrafish LL HCs show that ACh elicits a decrease in evoked Ca signals, regardless of HC polarity. This effect is blocked by both α-bungarotoxin and apamin, indicating coupling of ACh-mediated effects to small-conductance Ca-activated potassium (SKs) channels. Our results indicate that an α9-containing (α9*) nAChR operates at the zebrafish LL efferent synapse. Moreover, the activation of α9* nAChRs most likely leads to LL HC hyperpolarization served by SK channels. The fish lateral line (LL) mechanosensory system shares structural, functional, and molecular similarities with those of the mammalian cochlea. Thus, it has become an accessible model for studying human hearing and balance disorders. However, the molecular players serving efferent control of LL hair cell (HC) activity have not been identified. Here we demonstrate that, different from the hearing organ of vertebrate species, a nicotinic acetylcholine receptor composed only of α9 subunits operates at the LL efferent synapse. Activation of α9-containing receptors leads to LL HC hyperpolarization because of the opening of small-conductance Ca-activated potassium channels. These results will further aid in the interpretation of data obtained from LL HCs as a model for cochlear HCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7786207PMC
http://dx.doi.org/10.1523/JNEUROSCI.1772-20.2020DOI Listing

Publication Analysis

Top Keywords

efferent synapse
16
molecular players
12
structural functional
8
functional molecular
8
molecular similarities
8
model studying
8
studying human
8
human hearing
8
hearing balance
8
balance disorders
8

Similar Publications

Associative plasticity at thalamocortical synapses is thought to be constrained by age in the mammalian cortex. However, here we show for the first time that prolonged visual deprivation induces robust and reversible plasticity at synapses between first order visual thalamus and cortical layer 4 pyramidal neurons. The plasticity is associative and expressed by changes in presynaptic function, thereby amplifying and relaying the change in efferent drive to the visual cortex.

View Article and Find Full Text PDF

In the mammalian cochlea, sensory hair cells are crucial for the transduction of acoustic stimuli into electrical signals, which are then relayed to the central auditory pathway via spiral ganglion neuron (SGN) afferent dendrites. The SGN output is directly modulated by inhibitory cholinergic axodendritic synapses from the efferent fibers originating in the superior olivary complex. When the adult cochlea is subjected to noxious stimuli or aging, the efferent system undergoes major rewiring, such that it reestablishes direct axosomatic contacts with the inner hair cells (IHCs), which occur only transiently during prehearing stages of development.

View Article and Find Full Text PDF

We present a two-dimensional (2D) electrically conductive metal-organic framework (EC-MOF)-based artificial synapse. The intrinsic electronic conductivity and subnanometer channels of the EC-MOF facilitate efficient ion diffusion, enable a high density of active redox centers, and significantly enhance capacitance within the artificial synapse. As a result, the synapse operates at an ultralow voltage of 10 mV and exhibits a remarkably low power consumption of approximately 1 fW, along with the longest retention time recorded for two-terminal electrolyte-type artificial synapses to date.

View Article and Find Full Text PDF

Background: Noise-induced cochlear synaptopathy has recently emerged as a focus in hearing research.

Purpose: This study aimed to examine the impact of repeated noise exposure on the quantification and mRNA expression levels of cochlear synapses.

Methods: Measurements were conducted at baseline, 1 day, and 14 days post-exposure to 88 or 97 dB SPL noise (2 h/day for 7 days, frequency range 2-20 kHz).

View Article and Find Full Text PDF

In the developing cochlea, just before the onset of hearing on postnatal day 12, the medial olivocochlear efferent axons in synaptic contact with the inner hair cells (IHCs) start withdrawing and new efferent synaptic connections are formed on the outer hair cells (OHCs), thereby progressing towards the adult pattern of medial olivocochlear efferent innervation. The synapses are inhibitory, calcium influx through the α9α10 nicotinic acetylcholine receptors (nAChRs) driving opening of calcium-dependent potassium channels. The nAChRs appear to function similarly in IHCs and OHCs, although with probable kinetic differences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!