De novo protein design has succeeded in generating a large variety of globular proteins, but the construction of protein scaffolds with cavities that could accommodate large signaling molecules, cofactors, and substrates remains an outstanding challenge. The long, often flexible loops that form such cavities in many natural proteins are difficult to precisely program and thus challenging for computational protein design. Here we describe an alternative approach to this problem. We fused two stable proteins with C2 symmetry-a de novo designed dimeric ferredoxin fold and a de novo designed TIM barrel-such that their symmetry axes are aligned to create scaffolds with large cavities that can serve as binding pockets or enzymatic reaction chambers. The crystal structures of two such designs confirm the presence of a 420 cubic Ångström chamber defined by the top of the designed TIM barrel and the bottom of the ferredoxin dimer. We functionalized the scaffold by installing a metal-binding site consisting of four glutamate residues close to the symmetry axis. The protein binds lanthanide ions with very high affinity as demonstrated by tryptophan-enhanced terbium luminescence. This approach can be extended to other metals and cofactors, making this scaffold a modular platform for the design of binding proteins and biocatalysts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7720202PMC
http://dx.doi.org/10.1073/pnas.2008535117DOI Listing

Publication Analysis

Top Keywords

tim barrel
8
protein design
8
novo designed
8
designed tim
8
tight specific
4
specific lanthanide
4
lanthanide binding
4
novo
4
binding novo
4
novo tim
4

Similar Publications

Structural and functional snapshots of a broad-specificity endoglucanase from Thermogutta terrifontis for biomass saccharification.

Arch Biochem Biophys

December 2024

The Division of Structural Biology, The Nuffield Department of Medicine, University of Oxford, UK; The Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0QS, UK. Electronic address:

Multifunctionality, processivity, and thermostability are critical for the cost-effective enzymatic saccharification of non-food plant biomass polymers such as β-glucans, celluloses, and xylans to generate biofuels and other valuable products. We present molecular insights into a processive multifunctional endo-1,3-1,4-β-d-glucanase (Tt_End5A) from the hyperthermophilic bacterium Thermogutta terrifontis. Tt_End5A demonstrated activities against a broad spectrum of β-polysaccharides, including barley glucan, lichenan, carboxymethyl cellulose, regenerated amorphous cellulose (RAC), Avicel, xylan, laminarin, mannan, curdlan, xanthan, and various chromogenic substrates at pH 7 and temperatures ranging from 70 to 80°C.

View Article and Find Full Text PDF

β-1,3-Glucanases have prospective applications in areas such as functional oligosaccharide preparation, plant protection, and breweries. In this study, a glycoside hydrolase (GH) family 17 β-1,3-glucanase (BbGlc17A) from bacterium from a microbial mat metagenome from the Great Salt Lake was identified. BbGlc17A catalyzed the hydrolytic conversion of laminarin into β-glucooligosaccharides with polymerization degrees of 3-8.

View Article and Find Full Text PDF

(EF) is a traditional Chinese herbal medicine, and its primary bioactive ingredients, such as icariin, are flavonoid glycosides. A rare EF flavonoid, baohuoside I, exhibits superior bioactivities and enhanced bioavailability compared to its metabolic precursor icariin. The biotransformation of icariin to baohuoside I can be effectively and specifically achieved by β-glucosidases.

View Article and Find Full Text PDF

Structure and identification of the native PLP synthase complex from lysate.

mBio

November 2024

Department of Microbiology, Immunology & Molecular Genetics, University of California Los Angeles, Los Angeles, California, USA.

Many protein-protein interactions behave differently in biochemically purified forms as compared to their states. As such, determining native protein structures may elucidate structural states previously unknown for even well-characterized proteins. Here, we apply the bottom-up structural proteomics method, , toward a model methanogenic archaeon.

View Article and Find Full Text PDF

Sulfur is an essential element for life. Bacteria can obtain sulfur from inorganic sulfate; but in the sulfur starvation-induced response, employ two-component flavin-dependent monooxygenases (TC-FMOs) from the and operons to assimilate sulfur from environmental compounds including alkanesulfonates and dialkylsulfones. Here, we report binding studies of oxidized FMN to enzymes involved within the enzymatic pathway responsible for converting dimethylsulfone (DMSO) to sulfite.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!