Gut dysbiosis precedes clinic symptoms in rheumatoid arthritis (RA) and has been implicated in the initiation and persistence of RA. The early treatment of RA is critical to better clinical outcome especially for joint destruction. Although dietary interventions have been reported to be beneficial for RA patients, it is unclear to whether diet-induced gut microbiome changes can be a preventive strategy to RA development. Here, we investigated the effect of a high fiber diet (HFD) rich with resistant starch (RS) on collagen-induced arthritis (CIA) and gut microbial composition in mice. RS-HFD significantly reduced arthritis severity and bone erosion in CIA mice. The therapeutic effects of RS-HFD were correlated with splenic regulatory T cell (Treg) expansion and serum interleukin-10 (IL-10) increase. The increased abundance of Lactobacillus and Lachnoclostridium genera concomitant with CIA were eliminated in CIA mice fed the RS-HFD diet. Notably, RS-HFD also led to a predominance of Bacteroidetes, and increased abundances of Lachnospiraceae_NK4A136_group and Bacteroidales_S24-7_group genera in CIA mice. Accompanied with the gut microbiome changes, serum levels of the short-chain fatty acid (SCFA) acetate, propionate and isobutyrate detected by GC-TOFMS were also increased in CIA mice fed RS-HFD. While, addition of β-acids from hops extract to the drinking water of mice fed RS-HFD significantly decreased serum propionate and completely eliminated RS-HFD-induced disease improvement, Treg cell increase and IL-10 production in CIA mice. Moreover, exogenous propionate added to drinking water replicated the protective role of RS-HFD in CIA including reduced bone damage. The direct effect of propionate on T cells in vitro was further explored as at least one mechanistic explanation for the dietary effects of microbial metabolites on immune regulation in experimental RA. Taken together, RS-HFD significantly reduced CIA and bone damage and altered gut microbial composition with concomitant increase in circulating propionate, indicating that RS-rich diet might be a promising therapy especially in the early stage of RA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaut.2020.102564DOI Listing

Publication Analysis

Top Keywords

cia mice
20
mice fed
12
fed rs-hfd
12
cia
9
resistant starch
8
collagen-induced arthritis
8
mice
8
gut microbiome
8
microbiome changes
8
gut microbial
8

Similar Publications

Objective: This study aimed to investigate the efficacy of M3-DPPE liposomal nanoparticles encapsulated with mRNA encoding cytokines (M3-mRNAs) in targeting macrophages for the treatment of inflammation-induced joint injury.

Methods: , M3-mRNAs were administered to peritoneal exudate macrophages (PEMs), and the uptake was assessed using flow cytometry. The mechanism of uptake was investigated by blocking the CLEC12A pathway with M3-SiCLEC12A and observing CD206-mediated endocytosis.

View Article and Find Full Text PDF

Elevated synovial expression of the triggering receptor expressed on myeloid cells 1 (TREM1) has been identified as a significant biomarker for assessing disease activity in rheumatoid arthritis (RA). The upregulated expression of TREM1, induced by inflammatory mediators in infiltrating macrophages, plays a critical role in synovitis and joint destruction in RA. Our previous sequencing data linked TREM1 activation to aberrant mitophagy.

View Article and Find Full Text PDF

Blocking the Sphingosine-1-Phosphate Receptor 2 (S1P) Reduces the Severity of Collagen-Induced Arthritis in DBA-1J Mice.

Int J Mol Sci

December 2024

Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446, Republic of Korea.

The amount of sphingosine 1-phosphate (S1P) found in the synovial tissue of individuals with rheumatoid arthritis is five times greater than that in those with osteoarthritis. Our study aims to determine whether inhibiting S1P can mitigate collagen-induced rheumatoid arthritis (CIA) by using an S1P antagonist, JTE-013, alongside DBA-1J wild-type (WT) and knock-out (KO) mice. CIA causes increases in arthritis scores, foot swelling, synovial hyperplasia, pannus formation, proteoglycan depletion, cartilage damage, and bone erosion, but these effects are markedly reduced when JTE-013 is administered to WT mice.

View Article and Find Full Text PDF

The activation of acid-sensing ion channel 1a (ASIC1a) in response to extracellular acidification leads to an increase in extracellular calcium influx, thereby exacerbating the degeneration of articular chondrocytes in rheumatoid arthritis (RA). It has been suggested that the inhibition of extracellular calcium influx could potentially impede chondrocyte ferroptosis. The cystine transporter, solute carrier family 7 member 11 (SLC7A11), is recognized as a key regulator of ferroptosis.

View Article and Find Full Text PDF

Effects of Ab501 (certolizumab mice equivalent) in arthritis induced bone loss.

ARP Rheumatol

January 2025

Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Portugal.

Introduction - Rheumatoid arthritis (RA) is a chronic immune-mediated inflammatory disease, which causes local and systemic bone damage. The main goal of this work was to analyze, how treatment intervention with Ab501 (certolizumab mice equivalent) prevents the disturbances on bone structure and mechanics induced by arthritis. Methods - Thirty DBA/1 collagen-induced arthritis (CIA) mice were randomly housed in experimental groups, as follows: arthritic untreated (N=9), preventive intervention (N=10) and treatment intervention (N=11).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!