Background: Cardiomegaly is a relatively common incidental finding on chest X-rays; if left untreated, it can result in significant complications. Using Artificial Intelligence for diagnosing cardiomegaly could be beneficial, as this pathology may be underreported, or overlooked, especially in busy or under-staffed settings.

Purpose: To explore the feasibility of applying four different transfer learning methods to identify the presence of cardiomegaly in chest X-rays and to compare their diagnostic performance using the radiologists' report as the gold standard.

Material And Methods: Two thousand chest X-rays were utilized in the current study: 1000 were normal and 1000 had confirmed cardiomegaly. Of these exams, 80% were used for training and 20% as a holdout test dataset. A total of 2048 deep features were extracted using Google's Inception V3, VGG16, VGG19, and SqueezeNet networks. A logistic regression algorithm optimized in regularization terms was used to classify chest X-rays into those with presence or absence of cardiomegaly.

Results: Diagnostic accuracy is reported by means of sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), with the VGG19 network providing the best values of sensitivity (84%), specificity (83%), PPV (83%), NPV (84%), and overall accuracy (84,5%). The other networks presented sensitivity at 64.1%-82%, specificity at 77.1%-81.1%, PPV at 74%-81.4%, NPV at 68%-82%, and overall accuracy at 71%-81.3%.

Conclusion: Deep learning using transfer learning methods based on VGG19 network can be used for the automatic detection of cardiomegaly on chest X-ray images. However, further validation and training of each method is required before application to clinical cases.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0284185120973630DOI Listing

Publication Analysis

Top Keywords

chest x-rays
20
cardiomegaly chest
12
transfer learning
12
learning methods
12
vgg19 network
8
chest
6
x-rays
5
cardiomegaly
5
identifying cardiomegaly
4
x-rays cross-sectional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!