Computer-based technologies play a central role in the dentistry field, as they present many methods for diagnosing and detecting various diseases, such as periodontitis. The current study aimed to develop and evaluate the state-of-the-art object detection and recognition techniques and deep learning algorithms for the automatic detection of periodontal disease in orthodontic patients using intraoral images. In this study, a total of 134 intraoral images were divided into a training dataset ( = 107 [80%]) and a test dataset ( = 27 [20%]). Two Faster Region-based Convolutional Neural Network (R-CNN) models using ResNet-50 Convolutional Neural Network (CNN) were developed. The first model detects the teeth to locate the region of interest (ROI), while the second model detects gingival inflammation. The detection accuracy, precision, recall, and mean average precision (mAP) were calculated to verify the significance of the proposed model. The teeth detection model achieved an accuracy, precision, recall, and mAP of 100 %, 100%, 51.85%, and 100%, respectively. The inflammation detection model achieved an accuracy, precision, recall, and mAP of 77.12%, 88.02%, 41.75%, and 68.19%, respectively. This study proved the viability of deep learning models for the detection and diagnosis of gingivitis in intraoral images. Hence, this highlights its potential usability in the field of dentistry and aiding in reducing the severity of periodontal disease globally through preemptive non-invasive diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7697132PMC
http://dx.doi.org/10.3390/ijerph17228447DOI Listing

Publication Analysis

Top Keywords

convolutional neural
12
intraoral images
12
accuracy precision
12
precision recall
12
orthodontic patients
8
faster region-based
8
region-based convolutional
8
deep learning
8
periodontal disease
8
neural network
8

Similar Publications

Rationale And Objectives: Training Convolutional Neural Networks (CNN) requires large datasets with labeled data, which can be very labor-intensive to prepare. Radiology reports contain a lot of potentially useful information for such tasks. However, they are often unstructured and cannot be directly used for training.

View Article and Find Full Text PDF

Advanced thyroid nodule detection using ultrasonography image analysis and bilateral mean clustering strategies.

Comput Biol Med

January 2025

Department of Computing Technologies, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India. Electronic address:

This research work focuses on developing an advanced diagnostic method for thyroid nodules using ultrasonography images. The core idea revolves around the observation that the presence and amount of calcium flecks in thyroid nodules can indicate their severity, potentially leading to severe thyroid cancer. A novel technique, named Bilateral Mean Clustering Strategy (Bi-MCS), is proposed, combining the strengths of Fuzzy C mean and K-mean clustering approaches.

View Article and Find Full Text PDF

Cyanobacteria hot spot detection integrating remote sensing data with convolutional and Kolmogorov-Arnold networks.

Sci Total Environ

January 2025

Interdisciplinary Lab for Mathematical Ecology and Epidemiology & Department of Mathematical and Statistical Sciences, University of Alberta, Canada. Electronic address:

Prompt and accurate monitoring of cyanobacterial blooms is essential for public health management and understanding aquatic ecosystem dynamics. Remote sensing, in particular satellite observations, presents a good alternative for continuous monitoring. This study employs multispectral images from the Sentinel-2 constellation alongside ERA5-Land to enable broad-scale data acquisition.

View Article and Find Full Text PDF

Information-controlled graph convolutional network for multi-view semi-supervised classification.

Neural Netw

December 2024

College of Computer and Data Science, Fuzhou University, Fuzhou, 350108, China; Key Laboratory of Intelligent Metro, Fujian Province University, Fuzhou, 350108, China. Electronic address:

Graph convolutional networks have achieved remarkable success in the field of multi-view learning. Unfortunately, most graph convolutional network-based multi-view learning methods fail to capture long-range dependencies due to the over-smoothing problem. Many studies have attempted to mitigate this issue by decoupling graph convolution operations.

View Article and Find Full Text PDF

Current neural network models of primate vision focus on replicating overall levels of behavioral accuracy, often neglecting perceptual decisions' rich, dynamic nature. Here, we introduce a novel computational framework to model the dynamics of human behavioral choices by learning to align the temporal dynamics of a recurrent neural network (RNN) to human reaction times (RTs). We describe an approximation that allows us to constrain the number of time steps an RNN takes to solve a task with human RTs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!