Bacterial Nanocellulose-Enhanced Alginate Double-Network Hydrogels Cross-Linked with Six Metal Cations for Antibacterial Wound Dressing.

Polymers (Basel)

Microbiological Engineering and Industrial Biotechnology Group, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.

Published: November 2020

Alginate (Alg) and bacterial nanocellulose (BNC) have exhibited great potential in biomedical applications, especially wound dressing. Non-toxicity and a moisture-maintaining nature are common features making them favorable for functional dressing fabrication. BNC is a natural biopolymer that promotes major advances to the current and future biomedical materials, especially in a flat or tubular membrane form with excellent mechanical strength at hydrated state. The main drawback limiting wide applications of both BNC and Alg is the lack of antibacterial activity, furthermore, the inherent poor mechanical property of Alg leads to the requirement of a secondary dressing in clinical treatment. To fabricate composite dressings with antibacterial activity and better mechanical properties, sodium alginate was efficiently incorporated into the BNC matrix using a time-saving vacuum suction method followed by cross-linking through immersion in separate solutions of six cations (manganese, cobalt, copper, zinc, silver, and cerium). The results showed the fabricated composites had not only pH-responsive antibacterial activities but also improved mechanical properties, which are capable of acting as smart dressings. All composites showed non-toxicity toward fibroblast cells. Rat model evaluation showed the skin wounds covered by the dressings healed faster than by BNC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696020PMC
http://dx.doi.org/10.3390/polym12112683DOI Listing

Publication Analysis

Top Keywords

wound dressing
8
antibacterial activity
8
mechanical properties
8
bnc
5
bacterial nanocellulose-enhanced
4
nanocellulose-enhanced alginate
4
alginate double-network
4
double-network hydrogels
4
hydrogels cross-linked
4
cross-linked metal
4

Similar Publications

Combined negative pressure wound therapy with new wound dressings to repair a ruptured giant omphalocele in a neonate: a case report and literature review.

BMC Pediatr

January 2025

Department of Neonatology Nursing, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, Sichuan Province, China.

Background: Current treatment of giant omphalocele in newborns is not standardized. The main treatments include one-time repair and staged surgery using synthetic and biologic mesh, or silos. However, surgery can lead to various postoperative complications.

View Article and Find Full Text PDF

Polyvinyl alcohol/chitosan hydrogel based on deep eutectic solvent for promoting methicillin-resistant Staphylococcus aureus-infected wound healing.

Int J Biol Macromol

January 2025

School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China. Electronic address:

Bacterial-infected wounds usually lead to slow wound healing due to increased inflammation, especially wounds infected by drug-resistant bacteria, which is a serious challenge in the biomedical field. Traditional antimicrobial strategies such as antibiotics lead to a significant increase in drug-resistant strains and have limited efficacy. Therefore, there is an urgent need to develop multifunctional dressings with excellent antibacterial activity and promotion of wound healing.

View Article and Find Full Text PDF

Bacterial infections impede skin wound healing, and antibacterial hydrogels have garnered significant attention in the field of wound care due to their combined therapeutic effects. In this study, an intelligent, responsive AC-Gel@Cur-Au hydrogel was developed using temperature-sensitive agarose and pH-responsive chitosan as the structural framework, infused with Gel@Cur and AuNR. The AC-Gel@Cur-Au hydrogels demonstrated excellent mechanical properties, swelling capacity, tissue adhesion, and biodegradability.

View Article and Find Full Text PDF

Multifunctional dual-layer wound dressings hold significant promise for comprehensive full-thickness wound management by closely mimicking the native skin structure and features. Herein, we employed an innovative approach utilizing electrospinning techniques to develop a dual-layer dressing comprising a microfibrous Ecoflex®-Vanillin (Ex-Vnil) top layer (TL) and a nanofibrous Soluplus®-Insulin-like growth factor-1 (Sol-IGF1) bottom layer (BL). The tensile properties of dual-layer wound dressings were within the standard range for use in skin tissue regeneration.

View Article and Find Full Text PDF

Bactericidal Hemostatic Sponge: A Point of Care Solution to Combat Traumatic Injury.

Adv Healthc Mater

January 2025

Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.

Uncontrollable haemorrhage and associated microbial contamination in the battlefield and civilian injuries pose a tremendous threat to healthcare professionals. Such traumatic wounds often necessitate an effective point-of-care solution to prevent the consequent morbidity owing to blood loss or haemorrhage. However, developing superior hemostatic materials with anti-infective properties remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!