This study deals with the laser stereolithography manufacturing feasibility of copper-nickel nanowire-loaded photosensitive resins. The addition of nanowires resulted in a novel resin suitable for additive manufacturing technologies based on layer-by-layer photopolymerization. The pure and nanowire-loaded resin samples were 3D printed in a similar way. Their morphological, mechanical, thermal, and chemical properties were characterized. X-ray computed tomography revealed that 0.06 vol % of the composite resin was filled with nanowires forming randomly distributed aggregates. The increase of 57% in the storage modulus and 50% in the hardness when loading the resin with nanowire was attributed to the load transfer. Moreover, the decrease in the glass transition temperature from 57.9 °C to 52.8 °C in the polymeric matrix with nanowires evidenced a decrease in the cross-linking density, leading to a higher mobility of the polymer chains during glass transition. Consequently, this research demonstrates the successful dispersion and use of copper-nickel nanowires as a reinforcement material in a commercial resin for laser stereolithography.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7696011PMC
http://dx.doi.org/10.3390/polym12112680DOI Listing

Publication Analysis

Top Keywords

chemical properties
8
copper-nickel nanowires
8
laser stereolithography
8
glass transition
8
nanowires
5
resin
5
physical chemical
4
properties characterization
4
characterization 3d-printed
4
3d-printed substrates
4

Similar Publications

Traveling waves of excitation arise from the spatial coupling of local nonlinear events by transport processes. In corrosion systems, these electro-dissolution waves relay local perturbations across large portions of the metal surface, significantly amplifying overall damage. For the example of the magnesium alloy AZ31B exposed to sodium chloride solution, we report experimental results suggesting the existence of a vulnerable zone in the wake of corrosion waves where local perturbations can induce a unidirectional wave pulse or segment.

View Article and Find Full Text PDF

Synthesis and Evaluation of a Bifunctional Chelator for Thorium-227 Targeted Radiotherapy.

J Med Chem

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Thorium-227 (Th) is an α-emitting radionuclide currently under investigation for targeted alpha therapy. Available chelators used for this isotope suffer from challenging multistep syntheses. Here, we present the synthesis and preclinical evaluation of a novel bifunctional chelator, SCN-Bn-DOTHOPO, which contains an isothiocyanate group that is suitable for conjugation to biological molecules.

View Article and Find Full Text PDF

Ferroptosis is a classic type of programmed cell death characterized by iron dependence, which is closely associated with many diseases such as cancer, intestinal ischemic diseases, and nervous system diseases. Transferrin (Tf) is responsible for ferric-ion delivery owing to its natural Fe binding ability and plays a crucial role in ferroptosis. However, Tf is not considered as a classic druggable target for ferroptosis-associated diseases since systemic perturbation of Tf would dramatically disrupt blood iron homeostasis.

View Article and Find Full Text PDF

Developing chiral plasmonic nanostructures represents a significant scientific challenge due to their multidisciplinary potential. Observations have revealed that the dichroic behavior of metal plasmons changes when chiral molecules are present in the system, offering promising applications in various fields such as nano-optics, asymmetric catalysis, polarization-sensitive photochemistry and molecular detection. In this study, we explored the synthesis of plasmonic gold nanoparticles and the role of cysteine in their chiroplasmonic properties.

View Article and Find Full Text PDF

The synthesis and characterization of benzo[d]thiazol-2-amine derivatives, which were prepared by reacting benzothiazole with para-aminobenzophenone in ethanol, supplemented with glacial acetic acid. Subsequently, compound (2) was synthesized from compound (1) using NaNO, HPO, and HNO in a water-based solvent, resulting in 2-hydroxy-1-naphthaldehyde. Another derivative, compound (3), was synthesized by reacting compound (1) with vanillin under similar conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!