IscU is a central component of the ISC machinery and serves as a scaffold for de novo assembly of Fe-S clusters. The dedicated chaperone system composed of the Hsp70-chaperone HscA and the J-protein cochaperone HscB synergistically interacts with IscU and facilitates cluster transfer from IscU to recipient apo-proteins. Here, we report that the otherwise essential roles of HscA and HscB can be bypassed in vivo by a number of single amino acid substitutions in IscU. CD spectroscopic studies of the variant IscU proteins capable of this bypass activity revealed dynamic interconversion between two conformations: the denatured (D) and the structured (S) state in the absence and presence of Zn , respectively, which was far more prominent than interconversion observed in wild-type IscU. Furthermore, we found that neither the S-shifted (more structured) variants of IscU nor the perpetually denatured variants could perform their in vivo role regardless of whether the chaperone system was present or not. The present study thus provides for the first time evidence that an in vivo D-state of IscU exists and implies that conformational interconversion between the S- and D-states of the scaffolding protein is a fundamental requirement for the assembly and transfer of the Fe-S cluster.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.14646DOI Listing

Publication Analysis

Top Keywords

iscu
9
chaperone system
8
evidence dynamic
4
vivo
4
dynamic vivo
4
interconversion
4
vivo interconversion
4
interconversion conformational
4
conformational states
4
states iscu
4

Similar Publications

Background: The prognosis of cancers is strongly connected with nitrogen metabolism (NM), which plays a critical role in the microenvironment and growth of tumors. It is unsubstantiated, however, how important NM-related genes are for the prognosis of hepatocellular carcinoma (HCC).

Methods: Using publicly available data, we examined potential mechanisms of NM-related genes in HCC, created a predictive model, and assessed immune infiltration and medication sensitivity.

View Article and Find Full Text PDF

Iron-sulfur (FeS) protein biogenesis in eukaryotes begins with the de novo assembly of [2Fe-2S] clusters by the mitochondrial core iron-sulfur cluster assembly (ISC) complex. This complex comprises the scaffold protein ISCU2, the cysteine desulfurase subcomplex NFS1-ISD11-ACP1, the allosteric activator frataxin (FXN) and the electron donor ferredoxin-2 (FDX2). The structural interaction of FDX2 with the complex remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the link between molecular changes in pancreatic ductal adenocarcinoma (PDAC) and local invasiveness, emphasizing the importance of identifying gene profiles that predict surgical margin positivity to improve surgical outcomes.
  • - Researchers compared genome-wide miRNA expressions between positive and negative molecular surgical margins (MSM) and found that high levels of miR-210-3p are significantly associated with poor recurrence-free survival, larger tumor size, and increased metastasis.
  • - The findings indicate that inhibiting miR-210-3p in PDAC cell lines reduces cancer cell growth and invasiveness, with ISCU identified as a target gene affected by miR-210-3p, suggesting potential avenues for therapeutic interventions
View Article and Find Full Text PDF

Azotobacter vinelandii scaffold protein NifU transfers iron to NifQ as part of the iron-molybdenum cofactor biosynthesis pathway for nitrogenase.

J Biol Chem

November 2024

Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain. Electronic address:

Article Synopsis
  • * NifU is identified as the crucial donor of this iron-sulfur cluster, and evidence shows that NifU and NifQ interact effectively to transfer the cluster.
  • * The study suggests that for successful nitrogenase engineering in plants, NifU and NifQ should be co-expressed to optimize molybdenum supply for FeMo-co biosynthesis.
View Article and Find Full Text PDF

Ferroptosis is iron-dependent programmed cell death that inhibits tumor growth, particularly in traditional treatment-resistant tumors. Prognostic models constructed from ferroptosis-related genes are lacking; prognostic biomarkers remain insufficient. We acquired gene expression data and corresponding clinical information for bladder cancer (BC) samples from public databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!