IscU is a central component of the ISC machinery and serves as a scaffold for de novo assembly of Fe-S clusters. The dedicated chaperone system composed of the Hsp70-chaperone HscA and the J-protein cochaperone HscB synergistically interacts with IscU and facilitates cluster transfer from IscU to recipient apo-proteins. Here, we report that the otherwise essential roles of HscA and HscB can be bypassed in vivo by a number of single amino acid substitutions in IscU. CD spectroscopic studies of the variant IscU proteins capable of this bypass activity revealed dynamic interconversion between two conformations: the denatured (D) and the structured (S) state in the absence and presence of Zn , respectively, which was far more prominent than interconversion observed in wild-type IscU. Furthermore, we found that neither the S-shifted (more structured) variants of IscU nor the perpetually denatured variants could perform their in vivo role regardless of whether the chaperone system was present or not. The present study thus provides for the first time evidence that an in vivo D-state of IscU exists and implies that conformational interconversion between the S- and D-states of the scaffolding protein is a fundamental requirement for the assembly and transfer of the Fe-S cluster.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/mmi.14646 | DOI Listing |
Comput Methods Biomech Biomed Engin
December 2024
Department of Hepatobiliary Surgery, Quzhou Hospital Affiliated of Wenzhou Medical University (Quzhou People's Hospital), Quzhou, Zhejiang, China.
Background: The prognosis of cancers is strongly connected with nitrogen metabolism (NM), which plays a critical role in the microenvironment and growth of tumors. It is unsubstantiated, however, how important NM-related genes are for the prognosis of hepatocellular carcinoma (HCC).
Methods: Using publicly available data, we examined potential mechanisms of NM-related genes in HCC, created a predictive model, and assessed immune infiltration and medication sensitivity.
Nat Commun
December 2024
Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.
Iron-sulfur (FeS) protein biogenesis in eukaryotes begins with the de novo assembly of [2Fe-2S] clusters by the mitochondrial core iron-sulfur cluster assembly (ISC) complex. This complex comprises the scaffold protein ISCU2, the cysteine desulfurase subcomplex NFS1-ISD11-ACP1, the allosteric activator frataxin (FXN) and the electron donor ferredoxin-2 (FDX2). The structural interaction of FDX2 with the complex remains unclear.
View Article and Find Full Text PDFAnticancer Res
November 2024
Department of Gastroenterological Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
J Biol Chem
November 2024
Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain. Electronic address:
Medicine (Baltimore)
October 2024
Urology Department, First Hospital of Jilin University, Changchun, Jilin Province, China.
Ferroptosis is iron-dependent programmed cell death that inhibits tumor growth, particularly in traditional treatment-resistant tumors. Prognostic models constructed from ferroptosis-related genes are lacking; prognostic biomarkers remain insufficient. We acquired gene expression data and corresponding clinical information for bladder cancer (BC) samples from public databases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!