Monolithic hydrogel nanowells-in-microwells enabling simultaneous single cell secretion and phenotype analysis.

Lab Chip

Department of Mechanical Engineering, University of British Columbia, Canada. and Centre for Blood Research, University of British Columbia, Canada and School of Biomedical Engineering, University of British Columbia, Canada and Vancouver Prostate Centre, Vancouver General Hospital, Canada.

Published: December 2020

Cytokine secretion is a form of cellular communication that regulates a wide range of biological processes. A common approach for measuring cytokine secretion from single cells is to confine individual cells in arrays of nanoliter wells (nanowells) fabricated using polydimethylsiloxane. However, this approach cannot be easily integrated in standard microwell plates in order to take advantage of high-throughput infrastructure for automated and multiplexed analysis. Here, we used laser micropatterning to fabricate monolithic hydrogel nanowells inside wells in a microwell plate (microwells) using polyethylene glycol diacrylate (PEGDA). This approach produces high-aspect ratio nanowells that retain cells and beads during reagent exchange, enabling simultaneous profiling of single cell secretion and phenotyping via immunostaining. To limit contamination between nanowells, we used methylcellulose as a media additive to reduce diffusion distance. Patterning nanowells monolithically in microwells also dramatically increases density, providing ∼1200 nanowells per microwell in a microwell plate. Using this approach, we profiled IL-8 secretion from single MDA-MB-231 cells, which showed significant heterogeneity. We further profiled the polarization of THP-1 cells into M1 and M2 macrophages, along with their associated IL-1β and CCL-22 secretion profiles. These results demonstrate the potential to use this approach for high-throughput secretion and phenotype analysis on single cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0lc00965bDOI Listing

Publication Analysis

Top Keywords

monolithic hydrogel
8
enabling simultaneous
8
single cell
8
cell secretion
8
secretion phenotype
8
phenotype analysis
8
cytokine secretion
8
secretion single
8
single cells
8
microwell plate
8

Similar Publications

Four-dimensional printing (4DP) technologies can expand the functionality of stimuli-responsive devices to enable the integration of multiple stimuli-responsive parts into a compact device. Herein, we used digital light processing three-dimensional printing technique, flexible photocurable resins, and photocurable resins of the temperature-responsive hydrogels comprising -isopropylacrylamide (NIPAM), ,'-methylenebis(acrylamide) (MBA), and graphene for 4DP of a lab-on-valve (LOV) solid-phase extraction (SPE) device. This device featured flow manifolds and a monolithic packing connected by four near-infrared (NIR)-actuated temperature-responsive switching valves composed of a poly(NIPAM/MBA) (PNM) ball pushing a flexible membrane.

View Article and Find Full Text PDF

Multiple functional tailored materials have shown great potential for both pollutant degradation and freshwater recovery. In this study, we synthesized densely distributed Co onto carbon-layer-coated Ni/AlO hydrangea composites (Ni/AlO@Co) the polymerization of dopamine under a controlled graphitized process. The characterization results revealed that Ni/AlO@Co, with abundant exposed bimetallic Co-Ni species on the surface of AlO, could afford accessible catalytic sites for persulphate activation and subsequent pollutant degradation.

View Article and Find Full Text PDF

Cryogel particles were obtained by freeze-drying and grinding hydrogel monoliths made from 20 % (w/w) whey protein isolate (WP) suspensions prepared at different pH (pH 4.8, 5.7, and 7.

View Article and Find Full Text PDF

Vat Photopolymerization 3D Printing of Hydrogels Embedding Metal-Organic Frameworks for Photodynamic Antimicrobial Therapy.

ACS Appl Mater Interfaces

October 2024

Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24, 10124 Torino, Italy.

Article Synopsis
  • * This study explores using porphyrinic metal-organic framework (MOF) crystals mixed with gelatin methacrylate (GelMA) to create effective wound dressings through 3D printing, enhancing structural precision and antibacterial properties.
  • * The results show that hydrogels with higher MOF content showed over 99.99% antibacterial effectiveness and good biocompatibility, offering a new approach for tailored wound care solutions.
View Article and Find Full Text PDF

Functional-hydrogel-based electronic-skin patch for accelerated healing and monitoring of skin wounds.

Biomaterials

March 2025

Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:

Conductive hydrogels feature reasonable electrical performance as well as tissue-like mechanical softness, thus positioning them as promising material candidates for soft bio-integrated electronics. Despite recent advances in materials and their processing technologies, however, facile patterning and monolithic integration of functional hydrogels (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!