We employ a simple and mostly accurate dimensional interpolation formula using dimensional limits D = 1 and D = ∞ to obtain D = 3 ground-state energy of metallic hydrogen. We also present results describing the phase transitions for different symmetries of three-dimensional structure lattices. The interpolation formula not only predicts fairly accurate energies but also predicts a correct functional form of the energy as a function of the lattice parameters. That allows us to calculate different physical quantities such as the bulk modulus, Debye temperature, and critical transition temperature, from the gradient and the curvature of the energy curve as a function of the lattice parameters. These theoretical calculations suggest that metallic hydrogen is a likely candidate for high temperature superconductivity. The dimensional interpolation formula is robust and might be useful to obtain the energies of complex many-body systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp05301e | DOI Listing |
Sensors (Basel)
December 2024
Department of Roadway Engineering, School of Transportation, Southeast University, Nanjing 211189, China.
Ground-Penetrating Radar (GPR) has demonstrated significant advantages in the non-destructive detection of road structural defects due to its speed, safety, and efficiency. This paper proposes a three-dimensional (3D) reconstruction method for GPR images, integrating the back-projection (BP) imaging algorithm to accurately determine the size, location, and other parameters of road structural defects. Initially, GPR detection images were preprocessed, including direct wave removal and wavelet denoising, followed by the application of the BP algorithm to effectively restore the defect's location and size.
View Article and Find Full Text PDFNeural Netw
December 2024
College of Science, North China University of Science and Technology, Tangshan, 063210, China. Electronic address:
The class imbalance problem is one of the difficult factors affecting the performance of traditional classifiers. The oversampling technique is the most common way to solve the class imbalance problem. They alleviate the performance impact of the class imbalance problem on traditional machine learning by augmenting minority instance feature representation.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
School of Instrument Science and Opto-Electronic Engineering, Hefei University of Technology, Hefei 230009, China.
In multi-dimensional nanopositioning and nanomeasuring devices, interference measurement is widely used. The three-dimensional (3D) target mirror serves as the spatial reference plane to achieve multidimensional interference measurements. However, the surface shape errors of the target mirror are superimposed on the geometric dimensions of the measured workpiece, which limits the system's overall measurement accuracy.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Computer Science, University of California, Irvine, Irvine, CA 92617, USA. Electronic address:
Biomimetics (Basel)
December 2024
Air Traffic Management Institute, Civil Aviation Flight University of China, Deyang 618307, China.
This paper proposes an Improved Spider Wasp Optimizer (ISWO) to address inaccuracies in calculating the population (N) during iterations of the SWO algorithm. By innovating the population iteration formula and integrating the advantages of Differential Evolution and the Crayfish Optimization Algorithm, along with introducing an opposition-based learning strategy, ISWO accelerates convergence. The adaptive parameters trade-off probability (TR) and crossover probability (Cr) are dynamically updated to balance the exploration and exploitation phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!