The combination of chemical fertilizer and biochar is regarded as a useful soil supplement for improving the properties of soil and crop yields, and this study describes how the biochar of maize straw can be used to improve the quality of the degraded black soil. This has been achieved by examining the effects of combining different amounts of biochar with chemical fertilizer on the porosities and aggregate formation of soil and exploring how these changes positively impact on crop yields. A field trial design combining different amounts of maize straw biochar [0 (NPK), 15.75 (BC1), 31.5 (BC2), and 47.25 t ha-1 (BC3)] with a chemical fertilizer (NPK) has been used to investigate changes in the formation of soil aggregate, clay content, soil organic carbon (SOC), and crop yields in Chinese black soil over a three year period from 2013 to 2015. The results of this study show that the addition of fertilizer and biochar in 2013 to black soil results in an increased soybean and maize yields from 2013 to 2015 for all the treatments, with BC1/BC2 affording improved crop yields in 2015, while BC3 gave a lower soybean yield in 2015. Total porosities and pore volumes were increased for BC1 and BC2 treatments but relatively decreased for BC3, which could be attributed to increased soil capillary caused by the presence of higher numbers of fine soil particles. The addition of biochar had a positive influence on the numbers and mean weight diameters (MWD) of soil macroaggregates (>0.25 mm) that were present, with the ratio of SOC to TN in soil macroaggregates found to be greater than in the microaggregates. The most significant amount of carbon present in macroaggregates (>2 mm and 0.25-2 mm) was observed when BC2 was applied as a soil additive. Increasing the levels of maze straw biochar to 47.25 t ha-1 led to an increase in the total organic carbon of soil, however, the overall amount of macroaggregates and MWD were decreased, which is possibly due to localized changes in microbial habitat. The supplementation of biochar increased in the amount of aromatic C present (most significant effect observed for BC2), with the ratio of aliphatic C to aromatic C found to be enhanced due to a relative reduction in the aliphatic C content with >2 mm particle fraction. These changes in organic carbon content and soil stability were analyzed using univariate quadratic equations to explain the relationship between the type of functional groups (polysaccharide C, aliphatic C, aromatic C, aliphatic C/aromatic C) present in the soil aggregates and their MWDs, which were found to vary significantly. Overall, the results of this study indicate that the use of controlled amounts of maize-straw biochar in black soil is beneficial for improving crop yields and levels of soil aggregation, however, the use of excessive amounts of biochar results in unfavorable aggregate formation which negatively impacts the yields of crop growth. The data produced suggest that aromatic C content can be used as a single independent variable to characterize the stability of soil aggregate when biochar/fertilizer mixtures are used as soil additives to boost growth yields. Analysis of soil and crop performance in black soil revealed that the application of maize-straw biochar at a rate of 15.75 and 31.5 t ha-1 had positive effects on crop yields, soil aggregation and accumulation of aromatic C in the aggregate fractions when a soybean-maize rotation system was followed over three years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671521 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238883 | PLOS |
Ecotoxicol Environ Saf
January 2025
Department of Industrial Engineering, University of Applied Sciences Technikum Wien, Hoechstaedtplatz 6, Vienna 1200, Austria. Electronic address:
Lead (Pb), a toxic metal, causes severe health hazards to both humans and plants due to environmental pollution. Biochar addition has been efficiently utilized to enhance growth of plants as well as yield in the presence of Pb-induced stress. The present research introduces a novel use of biochar obtained from the weed Achyranthes japonica to enhance the growth of plants in Pb-contaminated soil.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Plantation Products, Spices & Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
This study investigates the effects of silver nanoparticles (Ag NPs), biogenic silver nanoparticles derived from Rhizopus spp. (R.Ag NPs), and Rhizopus (R) elicitors on the yield and bioactive compounds of turmeric (Curcuma longa) using foliar spray and rhizome dipping techniques.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
College of Life Sciences, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource, Nanjing Agricultural University, Nanjing, 210095, PR China. Electronic address:
Long-term cadmium (Cd) exposure inhibits plant growth and development, reduces crop yield and quality, and threatens food security. Exploring the Cd tolerance mechanisms and safe production of crops in Cd-contaminated environment has become a worldwide concern. In this study, mung bean (Vigna radiata L.
View Article and Find Full Text PDFViruses
December 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China.
(TYLCV) poses a significant threat to tomato production, leading to severe yield losses. The current control strategies primarily rely on the use of pesticides, which are often nonselective and costly. Therefore, there is an urgent need to identify more environmentally friendly alternatives.
View Article and Find Full Text PDFPlants (Basel)
January 2025
School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia.
There was an error in the original publication [...
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!