A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Weakly Supervised Learning for Single Depth-Based Hand Shape Recovery. | LitMetric

Recent emerging technologies such AR/VR and HCI are drawing high demand on more comprehensive hand shape understanding, requiring not only 3D hand skeleton pose but also hand shape geometry. In this paper, we propose a deep learning framework to produce 3D hand shape from a single depth image. To address the challenge that capturing ground truth 3D hand shape in the training dataset is non-trivial, we leverage synthetic data to construct a statistical hand shape model and adopt weak supervision from widely accessible hand skeleton pose annotation. To bridge the gap due to the different hand skeleton definitions in the existing public datasets, we propose a joint regression network for hand pose adaptation. To reconstruct the hand shape, we use Chamfer loss between the predicted hand shape and the point cloud from the input depth to learn the shape reconstruction model in a weakly-supervised manner. Experiments demonstrate that our model adapts well to the real data and produces accurate hand shapes that outperform the state-of-the-art methods both qualitatively and quantitatively.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2020.3037479DOI Listing

Publication Analysis

Top Keywords

hand shape
32
hand
13
hand skeleton
12
shape
9
skeleton pose
8
weakly supervised
4
supervised learning
4
learning single
4
single depth-based
4
depth-based hand
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!