Gas-phase heterogeneous catalysis is a process spatially constrained on the two-dimensional surface of a solid catalyst. Here, we introduce a new toolkit to open up the third dimension. We discovered that the activity of a solid catalyst can be dramatically promoted by covering its surface with a nanoscale-thin layer of liquid electrolyte while maintaining efficient delivery of gas reactants, a strategy we call three-phase catalysis. Introducing the liquid electrolyte converts the original surface catalytic reaction into an electrochemical pathway with mass transfer facilitated by free ions in a three-dimensional space. We chose the oxidation of formaldehyde as a model reaction and observed a 25000-times enhancement in the turnover frequency of Pt in three-phase catalysis as compared to conventional heterogeneous catalysis. We envision three-phase catalysis as a new dimension for catalyst design and anticipate its applications in more chemical reactions from pollution control to the petrochemical industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.0c03560 | DOI Listing |
Adv Sci (Weinh)
January 2025
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China.
Materials (Basel)
November 2024
hte GmbH, 69123 Heidelberg, Baden Wuerttemberg, Germany.
Nanoscale
December 2024
Department of Quantum System Engineering, Jeonbuk National University, Republic of Korea.
This review delves into the latest advancements in controlling three-phase boundaries (TPBs) in photocatalytic systems, with a focus on photo(electro)catalytic processes for nitrogen reduction, oxygen reduction, and water reduction. We critically analyze various strategies and advanced materials designed to enhance TPB performance, evaluating their impact on catalytic efficiency and identifying gaps in the existing literature. By examining sophisticated triphasic systems that integrate superwetting materials, we emphasize their essential role in improving light absorption, charge separation, and mass transfer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
Modification of g-CN with metal-free biomaterials through an environmentally friendly, low-energy, facile, and rapid single-step method is desired for the preparation of photocatalysts with efficient activity and high selectivity of CO reduction but remains a great challenge. Herein, we develop a phase-transitioned protein modification strategy for photocatalysts through superfast amyloid-like protein assembly on surfaces using a one-step sequential coating method. Metal-free carbon nitride/protein heterojunction composite photocatalysts (the phase-transitioned lysozyme (PTL), phase-transitioned bovine serum albumin (PTB), and phase-transitioned ovalbumin (PTO)-coated carbon nitride@SiO (CN@SiO) and bioinspired carbon nitride hollow nanospheres (CN-HS) obtained by etching of CN@SiO) are prepared using lysozyme, bovine serum albumin, and ovalbumin.
View Article and Find Full Text PDFJ Environ Manage
October 2024
School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!